• Title/Summary/Keyword: charred length

Search Result 5, Processing Time 0.023 seconds

The Effect of Treatment of Woody Charred Materials on the Growth and Components of Tomato and Chinese Cabbage (목질탄화물의 처리가 토마토와 배추의 생육 및 체내성분에 미치는 영향)

  • Jeong, Soon-Jae;Oh, Ju-Sung;Seok, Woon-Young;Cho, Mi-Yong
    • Korean Journal of Organic Agriculture
    • /
    • v.16 no.4
    • /
    • pp.455-469
    • /
    • 2008
  • A research was conducted to investigate the effect of treatment of woody charred materials such as wood vinegar, charcoal, and mixture of wood vinegar and charcoal on the growth and components of tomato and chinese cabbage. The effect of treatment of woody charred materials on the growth and components of tomato the research findings are as follows. The total number of soil microorganisms increased in the groups treated with woody charred materials compared with the control. The fruit number, fruit length, fruit diameter, fruit weight, hardness and sugar contents of tomato did not show significant difference in all plots treated with woody charred materials, but the plot treated with wood vinegar + charcoal showed relatively higher values in general. Vitamin C contents were shown higher in the plots treated with woody charred materials than the control, and among the treatment plots. The effect of treatment of woody charred materials on the growth and components of chinese cabbage the research findings are as follows. The soil chemical components did not change before and after the treatment of woody charred materials. The total number of soil microorganisms increased in the treatment plots compared with the control, The leaf length, leaf width, inner leaf number, plant weight, and head weight of Chinese cabbage treated with woody charred materials were in general larger than the control. Among the treatment plots, the plot treated with wood vinegar + charcoal showed slightly higher values. The contents of minerals in chinese cabbage such as Ca, Fe, K, Mg and Mn were higher in the treatment plots than the control.

  • PDF

Flame Retardant Performance of Wood Treated with Flame Retardant Chemicals

  • Park, Hee-Jun;Mingyu-Wen, Mingyu-Wen;Cheon, Sang-Hun;Hwang, Jung-Woo;Oh, Seung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.5
    • /
    • pp.311-318
    • /
    • 2012
  • This study investigated the flame retardant performance of developed four types of flame retardant chemicals (FRC), FRC-A, B, C and D. Four kinds of soft wood species, Sugi (Cryptomeria), Spruce (Picea abies), Hinoki (Chamaecyparis obtusa) and Korean pine (Pinus koraiensis), were used. The wood specimens were treated by spreading the FRC on the surface with different quantities, 30, 50, 70, 90, 110 g/$m^2$, respectively. The charred area, charred length, after flame time and after glow time were tested. And their suitabilities as incombustible materials were evaluated. The specimen treated by FRC-D showed better incombustible properties than others, even though with lower quantity. Therefore it is supposed that the FRC-D could be able to be applied on the cultural heritage, such as Korean wooden house for preventing fire.

Experimental Study for DNA Fingerprint from Teeth of Charred Body (소사체 치아에서의 유전자지문 분석을 위한 실험적 연구)

  • Jong-Hoon Choi
    • Journal of Oral Medicine and Pain
    • /
    • v.21 no.2
    • /
    • pp.351-367
    • /
    • 1996
  • In the field Of individual identification in forensic Science, if the body is charred, it is sometimes impossible to identify the morphologic changes and charred tissue such as blood, muscle and bone can not be identified by forensic microbiologic method such as DNA typing. So the author used the characteristics of teeth which is relatively firm compare to other organs and stable to external environment such as heat and also possess cells needed for the DNA typing. The author conducted the experiment on teeth to detect DNA related to individual identification regarding to temperature in which other charredorgans can not be detected. The experiment was done on 64 extracted third molars consisted of unheated ones, and heated teeth to $100^{\circ}C$, $150^{\circ}C$, $200^{\circ}C$ for 45 min, 90 min, and 120 min respectively and to $250^{\circ}C$ for 45 min. DNA was extracted from each tooth and amplified fragment length polymorphism procedure(AMP-FLPs) using polymerase chain reaction(PCR) was applied and observed for the matching DNA in HumTH01 and HumCD4 locus and the followings Are the results : 1. It was able to detect matching DNA in HumTH01 and HumCD4 locus in every teeth which no heating has been done. 2. It was able to detect matching DNA in HumTH01 and HumCD4 locus in every teeth heated to $100^{\circ}C$ for 45, 90 and 120 min. 3. It was able to detect matching DNA in HumTH01 and HumCD4 locus in teeth heated to $l00^{\circ}C$, $200^{\circ}C$ for 45, 90, 120 min. 4. It was impossible to detect matching DNA in HumTH01 and HumCD4 locus in teeth heated to $250^{\circ}C$. So, it is possible to extract DNA from teeth that otherwise can not be extracted from other organs in the charred body and it can be concluded that teeth are highly reliable and applicatable as forensic odontology for individual identification.

  • PDF

Evaluation of the Residual Performance of Partially Charred Components of Old Wooden Structure I - Use of Ultrasonic Velocity and Testing of the Drilling Resistance -

  • Lee, Hyun-Mi;Hwang, Won-Joung;Lee, Dong-Heub;Kim, Hong Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.2
    • /
    • pp.193-206
    • /
    • 2014
  • Residual performance of old architectural wood which has been damaged was measured using Nondestructive Evaluation (NDE). The wood Pole Tester was used to assess ultrasonic velocity inside wood and drill resistance was determined using an IML-resistograph. For ultrasonic measurements squared timber and circular timber's measurements were separately conducted with 1,300 m/s as the standard ultrasonic velocity. The standard wood samples divided into two parts; a non-sound area (below the standard), and a sound area (above the standard). Furthermore, schematization of wood was compared with results naked eye observation. The drilling resistance test was performed for both length and thickness direction in wood. The internal of the drilling was set at 30 cm (length direction), 5 cm (width direction) and 30cm (thickness direction). A non-sound area was defined as that 1) amplitude is below 20% and 2) carbonization and deterioration are related.

Study of the method of production of excavated arrow bundle and its conservation treatment (발굴 출토 화살다발 제작기법 연구 및 보존처리)

  • Lee, Byeonghoon;Choi, Bobae;Huh, Ilgwon
    • Conservation Science in Museum
    • /
    • v.25
    • /
    • pp.9-26
    • /
    • 2021
  • This paper describes the production methods that were originally used for an arrow bundle excavated from a Bronze Age residential area in Auraji in Jeongseon, Gangwon-do Province and the conservation treatment process that it subsequently underwent. An arrow conventionally consists of an arrowhead and a shaft. It is rare to excavate a shaft along with an arrowhead in a complete form since the shaft is made of organic materials. Notably, the arrow bundle from the Auraji site is of great significance as it shows traces of tangless stone arrowheads attached to charred shafts and offers an important case of the split end of a piece of a tree being inserted into an arrowhead. For a further examination of the characteristics of the arrows from Auraji, microscopic investigation was conducted and the type of wood used for the arrow shafts was examined. The sequence and direction of processing and the particle sizes of the grinding tools were revealed through the analysis of traces of grinding on the stone arrowheads. The shaft is presumed to have been made from a green length of three-year-old willow (Salix spp.). A curing agent with a high degree of waterproofing and reversibility was used during the on-site curing process according to demands of the surrounding environment, and a technique that the authors call the "Bridge" method was used for emergency collection of the relics. Once the bundle was transferred to the conservation treatment lab, reinforcing materials were carefully chosen as it was important not to damage the relics during the process of turning them for the repair of their reverse sides. For this purpose, artificial clay was selected since it can safely bear a load and has excellent physical properties. Finally, detached parts were rejoined, the relics and their surrounding materials were cleaned, and the bottom sides were finished with epoxy resin prior to the display of the relics at the museum.