• Title/Summary/Keyword: charging material

Search Result 268, Processing Time 0.043 seconds

Electric Degraded Properties of EP Cable Rubber (EP 케이블 고무의 전기적 열화 특성)

  • Lee, Sung-Ill;Bae, Duck-Kweon;Kim, Sang-Hyeon;Lee, Jong-Pil;Oh, Yong-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.516-517
    • /
    • 2008
  • The ethylene-propylene (EP) rubbers mixed with one to one ratio is used as an insulation material in the nuclear power plant. It was investigated the effect of the amount of reinforcing agent. moisture absorption and heat treatment on the Ethylene-Propylene(EP) rubbers. The level of degradation was measured by the amount of discharging and. charging currents. When $\gamma$ rays were radiated on the EP rubbers with more charging material, the amount of discharging and charging currents was depended on the amount of reinforcing agent It was verified that the discharging and charging currents irradiated by $\gamma$ rays were higher than those that was not irradiated.

  • PDF

Thermal performance of the spherical capsule system using paraffin as the thermal storage material (파라핀 축열재를 사용한 구형캡슐 시스템의 전열성능)

  • Cho, K.N.;Choi, S.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.3
    • /
    • pp.354-363
    • /
    • 1997
  • The purpose of the present work is to show the best thermal storage material and the sensitivity of the parameters on the thermal performance by experimentally investigating the effects of the parameters on the thermal performance of the spherical capsule system using paraffins superior to the commercial one. The paraffins were n-Tetradecane and the mixture of n-Tetradecane 40% and n-Hexadecane 60%. The experimental parameters were the Reynolds number of 8, 12, and 16 and the inlet temperature of-7, -4, -1, and $2^{\circ}C$. The charging and the discharing time, the dimensionless thermal storage amount, and the averge heat transfer coefficient in the tank were obtained by utilizing the local temperature variation in the tank. The local charging and discharging time in the tank was axially and radially different a lot. The effects of the inlet temperature on the charging and the discharging time were larger during the charging process than during the discharging process, but the effects of the Reynolds number on the charging and the discharging time were in reverse order. The paraffins were better by 11~72% than the water with the inorganic material in the charging time aspect, but no difference in the discharging time aspect. The effects of the Reynolds number on the dimensionless thermal storage amount were smaller than the effects of the inlet temperature during the charging process, but in reverse order during the discharging process within the working range of the experimental parameters. The effects of the inlet temperature and the Reynolds number on the average heat transfer coefficient were larger during the discharging process than during the charging process. The average heat transfer coefficient for the paraffins was larger by 40% maximum than that for the commercial material during the charing and the discharging process.

  • PDF

Simulation of the Corona Charging Process in Polypropylene Electret for Sensor Material

  • Park, Geon-Ho;Park, Young-Chull;Yang, Jung-Yoon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.68-72
    • /
    • 2000
  • In order to estimate spatial charging process in the corona charging which has been used to make polymer electret, the electrical properties of polypropylene film were obtained from Thermally Stimulated Current (TSC) measurements after corona charging between knife electrode and cylinder electrode with the voltages of -5, -6, -7 and -8[kV], respectively. And then the electrostatic contour and the electric field vector were also simulated by using Finite Element Method (FEM). The edge effect around edge of knife electrode affected the electrostatic contour on surface of specimen and the electric field concentration inside specimen. The uneven charging state in the electret due to the mistake on design could be calculated and so the optimal design of corona charging device which is appropriate to various materials is come to be practicable.

  • PDF

Charging Behavior of Chopped Carbon Fibers under High Intensity Electric Fields

  • Park, Min;Kim, Junkyung;Lim, Soon-Ho;Ko, Moon-Bae;Choe, Chul-Rim
    • Macromolecular Research
    • /
    • v.8 no.1
    • /
    • pp.6-11
    • /
    • 2000
  • In this study, we examined the charging behavior of chopped carbon fibers during electro-flocking process, which is one of the key processes of the novel technique for fabricating conductive polymer composite films. Short carbon fibers (CF) during electroflocking were electrically charged by the combined effect of contact charging, corona charging and tribocharging. The specific charge built on CF surface was measured by using Faraday cup method. Specific charge increased not only with increasing electric field strength and potential impressed to mesh electrode as expected from theoretical considerations in literature, but with decreasing mesh opening size due to the improved contact charging condition. However, CF length was found unexpectedly to influence the amount of CF specific charge due to the agglomerated nature of CF flocks leading to the change in charging conditions.

  • PDF

Simulation of Charging Process in PTFE Electret (PTFE 일렉트렛트의 대전 과정 시뮬레이션)

  • Park, Geon-Ho;Kim, Sang-Jin;Sung, Nak-Jin;Bae, Duk-Kwun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05b
    • /
    • pp.123-126
    • /
    • 2005
  • In this study, the Thermally Stimulated Current(TSC) of corona charged PTFE is studied and the simulation of corona charging process is also calculated by Finite Element Method. The electrets which were formed by applying high voltages (DC ${\pm}5{\sim}{\pm}8$ [kV]) to PTFE, are used to measure TSC in the temperature range of $-100{\sim}+200$ [$^{\circ}C$] and then the Finite Element Method is performed to examine corona charging process using a obtained physical constants. As a result. it is confirmed that the charging negative corona is profitable as the applications are manufactured, because the time constant of negative corona is much larger than it of positive corona. And it is attempted to estimate the corona charging process in space using simulation.

  • PDF

A study on the auto-charging circuit of the battery power units using trigger characteristics of semiconductor device (반도체 스위칭 소자의 트리거 특성을 이용한 배터리 자동 충전회로에 관한 연구)

  • 김영민;황종선;박성진;임종연;송승호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.519-522
    • /
    • 2001
  • Recently, the battery charging technology and reducing technology of harmonics on AC input line are rising importantly according to increasing electrical facilities that it has been replaced battery with emergency power. In this study, I proposed that an auto-charging circuit of battery has low cost with simple-construction circuit, relative, harmonics reduction with diode tap-change method, high reliability of system for using characteristics of thyristor switching. In case of this circuit, convenience and reliability of maintenance of battery power units were more improved. 1 think that it is resulted in effect of prevention to shortening of battery life from over-charging and over-discharging and decrease of harmonics obstacle on AC input line.

  • PDF

The Simulation of Corona Charging Process in Polytetrafluoroethylene Electret using Finite Element Method (유한요소법을 이용한 PTFE 일렉트렛트의 코로나 대전 과정 시뮬레이션)

  • 이수길;유재웅;박건호;김충혁;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.05a
    • /
    • pp.94-98
    • /
    • 1994
  • In this study, the thermally stimulated current(TSC) of corona charged PTFE film was studied and the simulation of corona charging process was also calculated by finite element method. The electrets which were formed by appling high voltages(DC-5∼-8[kV]) to PTFE film were experimented to measure TSC in the temperature range of -100∼+200 [$^{\circ}C$] and then the finite element method was accomplished to examine corona charging process using a obtained physical constants. It is confirmed that the charging negative corona is profitable as the applications are manufactured because the time constant of negative corona is much larger than it of positive corona. And it is attempted to estimate the corona charging process in space using simulation.

  • PDF

Heat Transfer Characteristics of the Spherical Capsule Storage System Using Paraffins

  • Cho, Keum-Nam;Choi, S. H.
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.6
    • /
    • pp.113-123
    • /
    • 1998
  • The present study is to investigate the effect of experimental parameters on the heat transfer characteristics of a spherical capsule storage system using paraffins. N-Tetradecane and mixture of n-Tetradecane 40% and n-Hexadecane 60% were used as paraffins. Water with inorganic material was also tested for the comparison. The experimental parameters were varied for the Reynolds number from 8 to 16 and for the inlet temperature from -7 to 2$^{\circ}C$. Measured local temperatures of spherical capsules in the storage tank were utilized to calculate charging and discharging times, dimensionless thermal storage amount, and the average heat transfer coefficients in the tank. Local charging and discharging times in the storage tank were significantly different. The effect of inlet temperature on charging time was larger than that on discharging time, but the effect of Reynolds number on charging time was smaller than that on discharging time. Charging time of paraffins was faster by 11~72% than that of water with inorganic material, but little difference of discharging time was found among them. The effect of Reynolds number on the dimensionless thermal storage was less during charging process and more during discharging process than the effect of inlet temperature. The effect of the inlet temperature and the Reynolds number on the average heat transfer coefficient of the storage tank was stronger during discharging process than during charging process. The average heat transfer coefficients of the spherical capsule system using paraffins were larger by 40% than those using water.

  • PDF

Application of Nondestructive Technique on Hydrogen Charging Times of Stainless Steel 304L (스테인리스 304L강의 수소장입시간에 대한 비파괴기법 적용)

  • Lee, Jin-Kyung;Hwang, Seung-Kuk;Lee, Sang-Pill;Bae, Dong-Su;Son, Young-Seok
    • Journal of Power System Engineering
    • /
    • v.19 no.5
    • /
    • pp.60-66
    • /
    • 2015
  • Embrittlement of material by hydrogen charging should be cleared for safety of storage vessel of hydrogen and components deal with hydrogen. A stainless steel is generally used as materials for hydrogen transportation and storage, and it has a big advantage of corrosion resistance due to nickel component in material. In this study, microscopic damage behavior of stainless steel according to the hydrogen charging time using nondestructive evaluation was studied. The surface of stainless steel became more brittle as the hydrogen charging time increased. The parameters of nondestructive evaluation were also changed with the embrittlement of stainless steel surface by hydrogen charging. Ultrasonic test, which is the most generalized nondestructive technique, was applied to evaluate the relationship between the ultrasonic wave and mechanical properties of stainless steel by hydrogen charging. The attenuation coefficient of ultrasonic wave was increased with hydrogen charging time because of surface embrittlement of stainless steel. In addition, acoustic emission test was also used to study the dynamic behavior of stainless steel experienced hydrogen charging. AE event at the hydrogen charged specimen was obviously decreased at the plastic zone of stress-strain curves, while the number of event for the specimen of hydrogen free was dramatically generated when compared with the specimens underwent hydrogen charging.

Development of Triboelectrostatic Separation Technique for Recovery of Nylon from Radiator of End-of-Life Vehicle (폐자동차(廢自動車) 라디에이터로부터 Nylon 회수(回收)를 위한 마찰하전정전선별(摩擦荷電靜電選別) 기술개발(技術開發))

  • Baek, Sang-Ho;Jeon, Ho-Seok;Kim, Su-Gang;Lee, Kwang-Hoon
    • Resources Recycling
    • /
    • v.22 no.1
    • /
    • pp.29-35
    • /
    • 2013
  • The study on the recovery of Nylon from a radiator of End-of-Life Vehicle was conducted by using triboelectrostatic separation technique. For the effective separation of the sample(Nylon, PP glass), charge polarity and amount of each sample with various charging materials have been investigated by faraday cage. And then, charging material was selected as carrying out basic separation experiments with materials that can be possible to polarize samples. Finally, the continuos type triboelectrostatic separator was developed with selected charging material and the recovery possibility of the sample was confirmed as carrying out various separation experiments.