• Title/Summary/Keyword: charging effect

Search Result 331, Processing Time 0.032 seconds

AC Regeneratable Battery Charging and Discharging Test System (AC 회생이 가능한 배터리 충·방전 테스트 시스템)

  • Kim, Jun-Gu;Youn, Sun-Jae;Kim, Jae-Hyung;Won, Chung-Yuen;Na, Jong-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.99-106
    • /
    • 2012
  • In this paper, 15[kW] AC regenerative system for battery charging and discharging test is proposed. The regenerative system is able to regenerate surplus energy to the grid in discharging mode, and the inverter of the system can be operated as a converter to compensate scarce energy in charging mode. In case of the conventional DC charging and discharging system, the regenerative energy is consumed by a resistor. However, as the proposed system regenerates the surplus energy to the grid through using DC-AC inverter, the energy saving effect can be achieved. In this paper, 15[kW] battery charging and discharging system is developed, and the validity of the system is verified through simulation and experimental results.

Numerical and Experimental Study on the Increase of Removal Efficiency of SO2 in a Laboratory Scale Electrostatic Spray Drying Absorber (실험실 규모 정전기 분무형 반건식 세정기의 SO2 제거효율 향상에 대한 계산 및 실험적 연구)

  • Byun, Young-Cheol;Hwang, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.8
    • /
    • pp.1111-1120
    • /
    • 1998
  • Spray Drying Absorber(SDA) system, where the combustion product gas is mixed with atomized limestone-slurry droplets and then the chemical reaction of $SO_2$ with alkaline components of the liquid droplets forms sulfates, has been widely used to eliminate $SO_2$ gas from coal fired power plants and waste incinerators. Liquid atomization is necessary because it can maximize the reaction efficiency by increasing the total surface area and dispersion angle of the alkaline components. First, numerical calculations using FLUENT are carried out to investigate $SO_2$ concentration distribution and thus to calculate $SO_2$ removal efficiency. So to attain the optimized spray conditions, then an electrostatic spraying system is set up and spray visualization is performed to show the effect of an electric field on overall droplet size. Next, the effect of an electric field on the concentrations of $SO_2$ is experimentally examined. Field strength is varied from -10 kV to 10 kV and configurations of conduction charging and induction charging are utilized. Consequently, the electrostatic removal efficiency of 501 increases about 30% with the applied voltage of ${\pm}10kV$ but is independent of polarity of the applied voltage. It Is also found that the conduction charging configuration results in higher efficiency of $SO_2$ removal that the induction charging configuration. Finally, the effect of slurry temperature on $SO_2$ removal is studied. The temperature influences on the electrostatic removal efficiency of $SO_2$.

Monodisperse Particle Charging Characteristics in a DC-plasma (플라즈마내 입자의 하전특성에 관한 연구)

  • 최석호;김곤호;안강호
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.3
    • /
    • pp.261-266
    • /
    • 1998
  • Since the particles are highly charged in process plasmas, the dynamics of the particles are concerned principally with the effect of the charging amount and polarity. In order to investigate the charging effect of the particles in the plasmas, the known sizes of the mono-dispersed particles with 0.05$\mu\textrm{m}$, 0.07$\mu\textrm{m}$, 0.1$\mu\textrm{m}$and 0.2$\mu\textrm{m}$ diameter are introduced into the DC air-plasmas. The characteristics of the charged particles are measured with a Faraday cup. Results show that the particle charging polarity depends on the concentrations and sizes of the particles and the condition of plasma generation, operating pressure, and power. It is also found that the number of charges per a particle is in the ranges of $10^3$~$ 10^5$.

  • PDF

Effect of Lateral Diffusion on Hydrogen Permeation Measurement in Thick Steel Specimens

  • Traidia, A.;El-Sherik, A.M.;Attar, H.;Enezi, A.
    • Corrosion Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.201-208
    • /
    • 2017
  • A finite element analysis is proposed to study the effect of specimen dimensions on lateral diffusion of hydrogen during hydrogen permeation flux measurements. The error of measurement on thick specimens because of 1D diffusion approximation may be as much as 70%. A critical condition for accurate measurements is to designate the area of hydrogen monitoring/exit surface smaller than the area of hydrogen charging/entry surface. For thin to medium thickness specimens (ratio of thickness to specimen radius of 5:10 and below), the charging surface should be maximized and the monitoring surface should be minimized. In case of relatively thick specimens (ratio of thickness to specimen radius above of 5:10), use of a hydrogen-diffusion barrier on the specimen boundaries is recommended. It would completely eliminate lateral losses of hydrogen, but cannot eliminate the deviation towards 2D diffusion near the side edges. In such a case, the charging surface should be maximized and the monitoring surface should be as closer in dimension as the charging surface. A regression analysis was carried out and an analytical relationship between the maximum measurement error and the specimen dimensions is proposed.

A study on Characteristics of Heat Flow of Low Temperature Latent Thermal Storage System (저온 잠열 축열조내의 열유동 특성에 관한 연구)

  • Lee, W.S.;Park, J.W.
    • Solar Energy
    • /
    • v.19 no.4
    • /
    • pp.33-43
    • /
    • 1999
  • The study on ice thermal storage system is to improve total system performance and increase the economical efficiency in actual all-conditioning facilities. To obtain the high charging and discharging efficiencies in ice thermal storage system, the improvement of thermal stratification is essential, therefore the process flow must be piston flow in the cylindrical type. With the relation of the aspect ratio(H/D) in the storage tank, the stratification is formed better as inlet flow rate is smaller. If the inlet and the outlet port are settled at the upside and downside of the storage tank, higher storage rate could be obtainable. In case that the flow directions inside the thermal storage tank are the upward flow in charging and the downward in discharging, thermal stratification is improved because the thermocline thickness is maitained thin and the degree of stratification increases respectively. In the charging process, in case of inlet flow rate the thermal stratification has a tendency to be improved with the lower flow rate and smaller temperature gradient in case of inlet temperature, the large temperature difference between inflowing water and storage water are influenced from the thermal conduction. The effect of the reference temperature difference is seen differently in comparison with the former study for chilled and hot water. In the discharging process, the thermal stratification is improved by the effect of the thermal stratification of the charging process.

  • PDF

The Effect of Hydrogen in Automobile High Strength Steel Sheets Charged with Hydrogen by Using Electrochemical Method (전기화학적 방법으로 수소장입시킨 자동차 강판재의 수소 영향)

  • Park, Jae-Woo;Kang, Kae-Myung
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.5
    • /
    • pp.212-217
    • /
    • 2012
  • High strength steel sheets used for automobile outer-panels have been intensively studied for developing a lightweight automobile under a strong pressure of the requirements for enhancing the mileage and energy saving in production of automobile parts. It is known that high strength steels are susceptible to hydrogen embrittlement, The susceptibility to hydrogen embrittlement increases with increasing its strength. However, the effect of hydrogen on the fracture behavior of high strength steels, though investigated extensively, has not been fully understood. In this paper, hydrogen was charged with 590DP steels by electrochemical method and its content was measured by hydrogen determinator with the different charging conditions. It was shown that the SP energy and maximum load decreased with increasing charging time. The results of SEM-fractography investigation for the hydrogen contained samples showed that a small portion of dimples on cleavage-fractured surface were observed and the size of the dimples were decreased with increasing hydrogen charging time.

Numerical analysis of collection performance for electro-cyclone (전기싸이클론의 집진 성능 해석)

  • 김완수;강윤호;이진원
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.6
    • /
    • pp.702-713
    • /
    • 1998
  • The characteristics of flow and particle collection for an electrocyclone with a central wire inside a high efficiency Stairmand cyclone was numerically analysed. Turbulent flow field was modeled by the Reynolds stress model and solved with an FVM code FLUENT. Particle motion and in-situ charging were simultaneously solved by a Lagrangian integration with time. The flow field obtained was in good agreement with experiments in the outer region. The characteristics of collection enhancement due to electric force were well manifested and well explained based on first principles. The effect of the in-situ charging process was very similar to the case of a simplified assumption of saturated charging, and the effect of the hopper was proved negligible.

  • PDF

Sound-Insulation Performance of Aluminum Extruded Panel by Charging Foam in a High-speed Train (고속철도차량용 알루미늄 압출재의 차음성능에 대한 폼 충전효과)

  • Lee, Joong-Hyeok;Park, In-Seok;Kim, Seock-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.582-585
    • /
    • 2012
  • The aluminum extruded panel used for a high speed train shows the largest contribution to sound insulation performance of the train body. However, comparing with the flat panel having the same weight, the transmission loss falls sharply in the local resonance frequency band. Such fall of transmission loss can be improved by increasing the damping of local resonance. This study examines the charging effect of an urethane foam on the aluminum extruded panel of a high speed train. We charged the urethane foam with different mass density and in different way in the core part of the extruded panel. We measure the transmission loss and compare the sound insulation performance according to the density and charging method. Finally, Improvement effect of the transmission loss is compared and analysed in aspect of weight increment.

  • PDF

Energy Storage Characteristics In Fixed Beds (Charging, Storing, Discharging)

  • Hassanein, Soubhi A.;Choi, Sang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.17-23
    • /
    • 2004
  • In the present work, the numerical model was refined to predict the thermal analysis of energy storage in a fixed beds during (charging ,storing, discharging) mode. The governing energy equations of both fluid and the solid particles along with their initial and boundary conditions are derived using a two-phase, one dimensional model. The refined model is carried out by taking into account change of (air density , air specific heat) with air temperature and also by taking into considerations heat losses from bed to surrounding. Finite difference method was used to obtain solution of two governing energy equations of both fluid and solid particles through a computer program especially constructed for this purpose. The temperature field for the air and the solid are obtained, also efficiency of energy stored inside the bed is computed. Finally using refined model the effect of air flow rate per unit area Ga (0.2, 0.3, and 0.4 kg/$m^2$-s), and inlet air temperature (200, 250, 300 $^{\circ}C$) on energy storage characteristics was studied in three mode ( charging ,storing, discharging). The rock particles of diameter 1 em is used as bed material in this research.

  • PDF

A study on the Corona Electrification Phenomena for Polyvinyl chloride (PVC) (폴리염화비닐(PVC)의 코로나 대전현상에 관한 연구)

  • 박구범;황명환;조기선;이덕출;임헌찬
    • Journal of the Korean Society of Safety
    • /
    • v.7 no.2
    • /
    • pp.57-62
    • /
    • 1992
  • In this thesis, the electrification phenomenon was studied by measurement of charging current and discharging current in polymers when the carriers generated by corona discharge were supplied to the surface of polymers. Corona charging current of PVC, polar and noncrystalline polymer, was larger than that of nonpolar and amorphous polymers. Corona charging current on the specimen of naked upper surface (CIM) was larger than charging current on the specimen of electrode made. Carrier injection differed from interfacial phase of polymer surFace. The transfer phenomenon vaned with chemical structure of polymer and then the polar effect of PVC was remarkable because of large electron affinity of Cl. In the characteristics of discharging current of PVC, the abnormal current was observed. It was supposed that this phenomena presented the trap of injected carriers in PVC and that static electricity phenomenon was generated by trap.

  • PDF