• Title/Summary/Keyword: char formation

Search Result 52, Processing Time 0.026 seconds

Structure Formation in Multilayered Films Prepared by the Layer-by-Layer Deposition using PAA and HM-PEO

  • Seo, Jin-Hwa;Lutkenhaus Jodie L..;Kim, Jun-Oh;Hammond Paula T.;Char Kook-Heon
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.295-295
    • /
    • 2006
  • In present study, poly(acrylic acid) (PAA) and hydrophobically modified poly(ethylene oxide) (HM-PEO) multilayers based on the hydrogen bonding between the component polymer pair have been prepared by the LbL deposition method. Dip assembled HM-PEO/PAA multilayers yield unique film morphologies in comparison with PEO/PAA multilayers due to the micellar formation of HM-PEO owing to the hydrophobic attraction between alkyl chains end-capped with the PEO chains. Individual HM-PEO micelles were connected through the bridging PEO chains to form temporary networks on multilayer surface and induced peculiar surface morphology on HM-PEO/PAA multilayers above the critical number of bilayers.

  • PDF

Foaming Properties and Flame Retardancy of the Foams Based on NBR/GTR Compounds (니트릴고무/타이어고무분말(GTR)를 이용한 발포체의 발포 및 난연 특성에 관한 연구)

  • Moon, Sung-Chul;Jo, Byung-Wook;Choi, Jae-Kon
    • Elastomers and Composites
    • /
    • v.37 no.3
    • /
    • pp.159-169
    • /
    • 2002
  • The improvement of flame retardancy of the foams based on NBR/GTR compounds was conducted by formulating various materials i.e. NBR, GTR, inorganic and phosphorus containing flame retardants, foaming agent, cross-linking agent and activator. The foaming properties, morphology, smoke density and flame retardancy of the specimens were investigated using SEM, LOI tester, smoke density control system and cone calorimeter. The phosphorus containing flame retardant reduces heat release rate, increases the limiting oxygen index and a char formation. The inorganic flame retardant increases the limiting oxygen index and reduces heat release rate with an increased CO yield by char formation, and smoke suppressing effect. The formed char seemed to intercept the oxygen transport and heat transfer into the core area. When the composition ratios of the compounds of NBR/GTR were $100{\sim}80/0{\sim}20 wt.%$, and the ratios of the rubbers/flame retardants were $1/1.55{\sim}3.60 wt.%$, we could developed foams with low heat release rate, high limiting oxygen index($28.0{\sim}39.3$), closed or semi-closed cell of uniformity and reasonable expandability($225{\sim}250 %$).

Catalytic Pyrolysis of Miscanthus and Random Polypropylene over SAPO-11 (SAPO-11을 이용한 억새와 Random Polypropylene의 촉매 열분해)

  • Kang, Hyeon Koo;Yu, Mi Jin;Park, Sung Hoon;Jeon, Jong-Ki;Kim, Sang-Chai;Park, Young-Kwon
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.379-386
    • /
    • 2013
  • SAPO-11 was applied for the first time to the catalytic pyrolysis of miscanthus and random polypropylene (random PP). Thermogravimetric analysis confirmed that SAPO-11 promoted the dehydration of miscanthus while suppressing the formation of char. In the pyrolysis of random PP, the decomposition temperature and activation energy were reduced by using a catalyst. A large fraction of levoglucosan, which was the main oxygenate product from the non-catalytic pyrolysis of miscanthus, was converted to high value-added products, such as furans, phenolics and aromatics using SAPO-34. The catalytic pyrolysis of random PP produced gasoline- and diesel-range hydrocarbons.

A Development of Combustion Model for the Investigation of the Waste Bed Combustion Characteristics in a Waste Incinerator (소각로내의 폐기물층 연소특성 파악을 위한 연소모델 개발)

  • 전영남;김승호
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.4
    • /
    • pp.427-436
    • /
    • 2003
  • This study is to establish a waste bed combustion model that can be available to assist the design of incinerators for efficient operation control of municipal waste incinerators. An unsteady one -dimensional bed combustion modeling was developed which incorporates the various sub-process models and solves the governing equations for both gases and solids in the waste bed combustion phenomena. The combustion characteristics and the properties of the combustion gas released from the bed were investigated by using a developed model. Besides, a sub-model which predicts the formation and destruction of nitrogen oxides in the waste bed was also developed as a post-processor for the waste combustion model. It is found that the reduction rate of nitrogen oxides is enhanced in the char layer.

A Study of Thermal Properties of LDPE-Nanoclay Composite Films

  • Bumbudsanpharoke, Nattinee;Ko, Seonghyuk
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.21 no.3
    • /
    • pp.107-113
    • /
    • 2015
  • This work focused on the study of thermal properties and kinetic behavior of LDPE-nanoclay composite films. The effect of nanoclay content (0.5, 1, 3, and 5 wt%) on thermal stability and crystallization characteristics of the nanocomposites were investigated by Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). The results from endothermic curve showed that the nanoclay played an important role in the crystallization of nanocomposites by acting as nucleating agent. From exothermic curve, there was a crystallization temperature shift which was attributed to crystallization process induced by nanoclay. The TGA results showed that the addition of nanoclay significantly increased the thermal stability of LDPE matrix, which was likely due to the characteristic of layered silicates/clays dispersed in LDPE matrix as well as the formation of multilayered carbonaceous-silicate char. A well-known Coats-Redfern method was used to evaluate the decomposition activation energy of nanocomposite. It was demonstrated that introducing of nanoclay to LDPE matrix escalated the activation energy of nanocomposite decomposition resulting in thermal stability improvement.

Ionic Liquid as a solvent and Long-Term Separation Performance in Polymer/Silver Salt Complex Membrane

  • Kang, Sang-Wook;Kim, Jong-Hak;Char, Kook-Heon;Kang, Yong-Soo
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.307-307
    • /
    • 2006
  • The reduction behavior of silver ions to silver nanoparticles is an important research topic in polymer/silver salt complex membranes for facilitated olefin transport, because it has a significant effect on the long-term stability of membrane performance. In this study, the effects of solvent on the formation of silver nanoparticles and long-term membrane performance in polymer/silver salt complex membrane were investigated. This effect was assessed for the complexes of poly(N-vinyl pyrrolidone) $(PVP)/AgBF_{4}$ with the use of ionic liquid (IL), acetonitrile (ACN) and water as a solvent. Membrane performance test shows that long-term stability is strongly dependent on the kind of solvent and arranged: IL > ACN >> water.

  • PDF

Nanoporous Block Copolymer Micelle/Micelle Multilayer Films with Dual Optical Properties

  • Cho, Jin-Han;Hong, Jin-Kee;Char, Kook-Heon;Caruso, Frank
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.310-310
    • /
    • 2006
  • We have demonstrated the formation of highly nanoporous films composed of two different BCMs through layer-by-layer (LbL) assembly on substrates. The films thus prepared showed tunable optical properties, with strong antireflective properties with light transmission above 99%. Considering the wide application areas of both LbL multilayers and block copolymer thin films, the approaches introduced in present study are likely to open up new possibilities for devices with multifunctional properties.

  • PDF

Comparison of Combustion Properties of the Pinus rigida, Castanea sativa, and Zelkova serrata (리기다 소나무, 밤나무, 느티나무의 연소성질 비교)

  • Chung, Yeong-Jin
    • Fire Science and Engineering
    • /
    • v.23 no.4
    • /
    • pp.73-78
    • /
    • 2009
  • This paper investigated the combustion properties of the Pinus rigida, Castanea sativa, and Zelkova serrata which are grown in Korea using the cone calorimeter. The heat release rate and smoke production for these species were measured. With respect to an increase of retardant properties attributed to char formation, Zelkova serrata showed good properties compared with that of Pinus rigida and Castanea sativa. The Castanea sativa has high $CO_{peak}$ Yield and high $CO/CO_2$ Yield compared with that of Pinus rigida and Zelkova serrata.

Numerical Investigation for Combustion Characteristics of Vacuum Residue in a Test Furnace

  • Sreedhara, S.;Huh, Kang-Y.;Park, Ho-Young
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.121-127
    • /
    • 2006
  • It has become inevitable to search for alternative fuels due to severe energy crisis these days. Use of alternative fuels, which are typically of lower quality, tends to increase environmental pollution, including formation of nitrogen oxides (NOx). In this paper performance of vacuum residue has been investigated experimentally as well as numerically in typical operating conditions of a furnace. Heat release reaction is modeled as sequential steps of devolatilization, simplified gas phase reaction and char oxidation as that for pulverized coal. Thermal and fuel NOx are predicted by conditional estimation of elementary reaction rates and are compared against measured experimental data. On the overall reasonable agreement is achieved for spatial distributions of major species, temperature and NOx for all test cases.

  • PDF

Rheological behavior during the phase separation of thermoset epoxy/thermoplastic polymer blends

  • Kim, Hongkyeong;Kookheon Char
    • Korea-Australia Rheology Journal
    • /
    • v.12 no.1
    • /
    • pp.77-81
    • /
    • 2000
  • Rheological behavior of thermoset/thermoplastic blends of epoxy/polyethersulphone (PES) was monitored during curing of the epoxy resin. During the isothermal curing of the mixture, a fluctuation in viscosity just before the abrupt viscosity increase was observed. This fluctuation is found to be due to the phase separation of PES from the matrix epoxy resin during the curing. The experimentally observed viscosity fluctuation is simulated with a simple two phase suspension model in terms of the increase in domain size. The viscosity profiles obtained experimentally at different isothermal curing temperatures are in good agreement with the predictions from the simple model taking into account the viscosity change due to the growth of PES domain and the network formation of the epoxy matrix.

  • PDF