• Title/Summary/Keyword: chaotic neural network

Search Result 82, Processing Time 0.023 seconds

Chaotic System Control Considering Edge of Chaos Using Neural Network

  • Obayashi, Masanao;Umesako, Kosuke;Nakayama, Daisuke
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.93.1-93
    • /
    • 2002
  • In this paper, an efficient robust control method for chaotic system introducing the concept, the edge of chaos (:boundary status between chaos and non-chaos), is proposed. To realize this concept, we introduce an extended performance index which consists of two parts. One is for achievement of the system's objects, another is for keeping the system edge of chaos. Parameters of the neural network controller are adjusted to minimize the value of the extended performance index and achieve the above two objects using Random...

  • PDF

A Study on Trajectory Control of PUMA Robot using Chaotic Neural Networks and PD Controller (카오틱 신경망과 PD제어기를 이용한 푸마 로봇의 궤적제어에 관한 연구)

  • Jang, Chang-Hwa;Kim, Sang-Hui;An, Hui-Uk
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.5
    • /
    • pp.46-55
    • /
    • 2000
  • This paper presents a direct adaptive control of robot system using chaotic neural networks and PD controller. The chaotic neural networks have robust nonlinear dynamic characteristics because of the sufficient nonlinearity in neuron itself, and the additional self-feedback and inter-connecting weights between neurons in same layer. Since the structure and the learning method are not appropriate for applying in control system, this neural networks have not been applied. In this paper, a modified chaotic neural networks is presented for dynamic control system. To evaluate the performance of the proposed neural networks, these networks are applied to the trajectory control of the three-axis PUMA robot. The structure of controller consists of PD controller and chaotic neural networks in parallel for conforming the stability in initial learning phase. Therefore, the chaotic neural network controller acts as a compensating controller of PD controller.

  • PDF

Relationships Between the Characteristics of the Business Data Set and Forecasting Accuracy of Prediction models (시계열 데이터의 성격과 예측 모델의 예측력에 관한 연구)

  • 이원하;최종욱
    • Journal of Intelligence and Information Systems
    • /
    • v.4 no.1
    • /
    • pp.133-147
    • /
    • 1998
  • Recently, many researchers have been involved in finding deterministic equations which can accurately predict future event, based on chaotic theory, or fractal theory. The theory says that some events which seem very random but internally deterministic can be accurately predicted by fractal equations. In contrast to the conventional methods, such as AR model, MA, model, or ARIMA model, the fractal equation attempts to discover a deterministic order inherent in time series data set. In discovering deterministic order, researchers have found that neural networks are much more effective than the conventional statistical models. Even though prediction accuracy of the network can be different depending on the topological structure and modification of the algorithms, many researchers asserted that the neural network systems outperforms other systems, because of non-linear behaviour of the network models, mechanisms of massive parallel processing, generalization capability based on adaptive learning. However, recent survey shows that prediction accuracy of the forecasting models can be determined by the model structure and data structures. In the experiments based on actual economic data sets, it was found that the prediction accuracy of the neural network model is similar to the performance level of the conventional forecasting model. Especially, for the data set which is deterministically chaotic, the AR model, a conventional statistical model, was not significantly different from the MLP model, a neural network model. This result shows that the forecasting model. This result shows that the forecasting model a, pp.opriate to a prediction task should be selected based on characteristics of the time series data set. Analysis of the characteristics of the data set was performed by fractal analysis, measurement of Hurst index, and measurement of Lyapunov exponents. As a conclusion, a significant difference was not found in forecasting future events for the time series data which is deterministically chaotic, between a conventional forecasting model and a typical neural network model.

  • PDF

Analysis of Dynamical State Transition and Effects of Chaotic Signal in Continuous-Time Cyclic Neural Network (리미트사이클을 발생하는 연속시간 모델 순환결합형 신경회로망에서 카오스 신호의 영향)

  • Park Cheol-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.396-401
    • /
    • 2006
  • It is well-known that a neural network with cyclic connections generates plural limit cycles, thus, being used as a memory system for storing large number of dynamic information. In this paper, a continuous-time cyclic connection neural network was built so that each neuron is connected only to its nearest neurons with binary synaptic weights of ${\pm}1$. The type and the number of limit cycles generated by such network has also been demonstrated through simulation. In particular, the effect of chaos signal for transition between limit cycles has been tested. Furthermore, it is evaluated whether the chaotic noise is more effective than random noise in the process of the dynamical neural networks.

Model Predictive Control of Discrete-Time Chaotic Systems Using Neural Network (신경회로망을 이용한 이산치 혼돈 시스템의 모델 예측제어)

  • Kim, Se-Min;Choi, Yoon-Ho;Park, Jin-Bae;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.933-935
    • /
    • 1999
  • In this paper, we present model predictive control scheme based on neural network to control discrete-time chaotic systems. We use a feedforward neural network as nonlinear prediction model. The training algorithm used is an adaptive backpropagation algorithm that tunes the connection weights. And control signal is obtained by using gradient descent (GD), some kind of LMS method. We identify that the system identification results through model prediction control have a great effect on control performance. Finally, simulation results show that the proposed control algorithm performs much better than the conventional controller.

  • PDF

Robustness of Data Mining Tools under Varting Levels of Noise:Case Study in Predicting a Chaotic Process

  • Kim, Steven H.;Lee, Churl-Min;Oh, Heung-Sik
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.23 no.1
    • /
    • pp.109-141
    • /
    • 1998
  • Many processes in the industrial realm exhibit sstochastic and nonlinear behavior. Consequently, an intelligent system must be able to nonlinear production processes as well as probabilistic phenomena. In order for a knowledge based system to control a manufacturing processes as well as probabilistic phenomena. In order for a knowledge based system to control manufacturing process, an important capability is that of prediction : forecasting the future trajectory of a process as well as the consequences of the control action. This paper examines the robustness of data mining tools under varying levels of noise while predicting nonlinear processes, includinb chaotic behavior. The evaluated models include the perceptron neural network using backpropagation (BPN), the recurrent neural network (RNN) and case based reasoning (CBR). The concepts are crystallized through a case study in predicting a chaotic process in the presence of various patterns of noise.

  • PDF

Effects of Chaotic Signal in the Neural Networks Generating Limit Cycles (리미트사이클을 발생하는 신경회로망에 시어서 카오스 신호의 영향)

  • 김용수;박철영
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2002.06a
    • /
    • pp.361-366
    • /
    • 2002
  • It has been reported that neural network with cyclic connections generates limit cycles. The dynamics of discrete time network with cyclic connections has been analyzed. But the dynamics of cyclic network in continuous time has not been known well due to its huge calculation complexity. In this paper, we study the dynamics of the continuous time network with cyclic connections and the effect of chaotic signal in the network for transitions between limit cycles.

  • PDF

Effects of Chaotic Signal in the Cyclic Connection Neural Networks (순환결합형 뉴럴네트워크에 있어서 카오스 신호의 영향)

  • 박철영
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.7 no.4
    • /
    • pp.22-28
    • /
    • 2002
  • It has been reported that neural network with cyclic connections generates limit cycles. The dynamics of discrete time network with cyclic connections has been analyzed. But the dynamics of cyclic network in continuous time has not been known well due to its huge calculation complexity. In this paper, we study the dynamics of the continuous time network with cyclic connections and the effect of chaotic signal in the network for transitions between limit cycles.

  • PDF

Recognition of Unconstrained Handwritten Numerals using Modified Chaotic Neural Networks (수정된 카오스 신경망을 이용한 무제약 서체 숫자 인식)

  • 최한고;김상희;이상재
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.1
    • /
    • pp.44-52
    • /
    • 2001
  • This paper describes an off-line method for recognizing totally unconstrained handwritten digits using modified chaotic neural networks(MCNN). The chaotic neural networks(CNN) is modified to be a useful network for solving complex pattern problems by enforcing dynamic characteristics and learning process. Since the MCNN has the characteristics of highly nonlinear dynamics in structure and neuron itself, it can be an appropriate network for the robust classification of complex handwritten digits. Digit identification starts with extraction of features from the raw digit images and then recognizes digits using the MCNN based classifier. The performance of the MCNN classifier is evaluated on the numeral database of Concordia University, Montreal, Canada. For the relative comparison of recognition performance, the MCNN classifier is compared with the recurrent neural networks(RNN) classifier. Experimental results show that the classification rate is 98.0%. It indicates that the MCNN classifier outperforms the RNN classifier as well as other classifiers that have been reported on the same database.

  • PDF

Evolving Cellular Automata Neural Systems(ECANS 1)

  • Lee, Dong-Wook;Sim, Kwee-Bo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.158-163
    • /
    • 1998
  • This paper is our first attempt to construct a information processing system such as the living creatures' brain based on artificial life technique. In this paper, we propose a method of constructing neural networks using bio-inspired emergent and evolutionary concept, Ontogeny of living things is realized by cellular automata model and Phylogeny that is living things adaptation ability themselves to given environment, are realized by evolutionary algorithms. Proposing evolving cellular automata neural systems are calledin a word ECANS. A basic component of ECANS is 'cell' which is modeled on chaotic neuron with complex characteristics, In our system, the states of cell are classified into eight by method of connection neighborhood cells. When a problem is given, ECANS adapt itself to the problem by evolutionary method. For fixed cells transition rule, the structure of neural network is adapted by change of initial cell' arrangement. This initial cell is to become a network b developmental process. The effectiveness and the capability of proposed scheme are verified by applying it to pattern classification and robot control problem.

  • PDF