• Title/Summary/Keyword: chaotic advection

Search Result 13, Processing Time 0.021 seconds

The Prediction of mixing with Helix Index for 3-Dimensional channel in micro (3 차원 마이크로 채널에서 나선지수에 의한 혼합예측)

  • Jung, Seung-Hoon;Maeng, Joo-Sung
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2460-2464
    • /
    • 2008
  • The present paper suggests new method to know the effects of molecular diffusion and the helicity of microchannel flows on mixing in passive micromixers, which are essential components of a microfluidic chip. In this study, 'Helix Index' is newly defined as the magnitude of chaotic advection. Relationship between Helix Index and Mixing Index is analyzed numerically such as the wide range of Peclet and Reynolds numbers in three dimensional serpentine microchannel when using soluble solutions (water/glycerol). As a result, a simple algebraic equation is derived by this relationship based on a regression analysis. The algebraic equation is found to be able to accurately predict the mixing performance without solving the coupled, complex momentum and mass transfer equations.

  • PDF

Effect of Geometric Parameters in a Newly Designed Microchannel

  • Heo H. S.;Suh Y. K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.121-122
    • /
    • 2003
  • In this study a microchannel with various arrangement of blocks is newly proposed. This design comprises periodically arranged simple blocks. In this configuration, the stirring is greatly enhanced at a certain geometric parameter set. To characterize the flow field and the stirring effect both the numerical and experimental methods were employed. To obtain the velocity field, three-dimensional numerical computation to the Navier Stokes equations are performed by using a commercial code, FLUENT 6.0. The fluid-flow solutions are then cast into studying the characteristics of stirring with the aid of Lyapunov exponent. The numerical results show that the particles' trajectories in the microchannel heavily depend on the block arrangement. It was shown that the stirring is significantly enhanced at larger block-height and it reaches maximum when the height is 0.8 times the channel width. We also studied the effect of the block stagger angle, and it turns out that the stirring performance is the best at the block angel ${45^\circ}$.

  • PDF

Two-Fluid Mixing in a Microchannel (마이크로 채널에서 두 유체 혼합)

  • LIU Ying Zheng;KIM Byoung Jae;SUNG Hyung Jin
    • Journal of computational fluids engineering
    • /
    • v.8 no.2
    • /
    • pp.16-23
    • /
    • 2003
  • A numerical study of the mixing of two fluids(pure water and a solution of glycerol in water) in a microchannel was carried out. By varying the glycerol content of the glycerol/water solution, the variation in mixing behavior with changes in the difference of the properties of the two fluids(e.g., viscosity, density, diffusivity) was investigated. The mixing phenomena were tested for three micromixers: a square mixer, a three-dimensional serpentine mixer, and a staggered herringbone mixer. The governing equations of continuity, momentum and solute mass fraction were solved numerically. To evaluate mixing performance, a criterion index of mixing of mixing uniformity was proposed. In the systems considered, the Reynolds numbers based on averaged properties were 1 and 10. For low Reynolds number (Re = 1), the mixing performance varied inversely with mass fraction of glycerol due to the dominance of molecular diffusion. The mixing performance by diffusion deteriorated due to a significant reduction in the residence time of the fluid inside the mixers.