• Title/Summary/Keyword: channel sounding

Search Result 39, Processing Time 0.028 seconds

Ultra Wideband Channel Model for Indoor Environments

  • Alvarez, Alvaro;Valera, Gustavo;Manuel Lobeira;Torres, Rafael-Pedro;Garcia, Jose-Luis
    • Journal of Communications and Networks
    • /
    • v.5 no.4
    • /
    • pp.309-318
    • /
    • 2003
  • This paper presents an in-depth study of a UWB indoor radio channel between 1 and 9 GHz, which was used for the subsequent development of a new statistical UWB multipath channel model, focusing on short range indoor scenarios. The channel sounding process was carried out covering different indoor environments, such as laboratories, halls or corridors. A combination of new and traditional parameters has been used to accurately model the channel impulse response in order to perform a precise temporal estimation of the received pulse shape. This model is designed specifically for UWB digital systems, where the received pulse is correlated with an estimated replica of itself. The precision of the model has been verified through the comparison with measured data from equivalent scenarios and cases, and highly satisfactory results were obtained.

Adjoint-Based Observation Impact of Advanced Microwave Sounding Unit-A (AMSU-A) on the Short-Range Forecast in East Asia (수반 모델에 기반한 관측영향 진단법을 이용하여 동아시아 지역의 단기예보에 AMSU-A 자료 동화가 미치는 영향 분석)

  • Kim, Sung-Min;Kim, Hyun Mee
    • Atmosphere
    • /
    • v.27 no.1
    • /
    • pp.93-104
    • /
    • 2017
  • The effect of Advanced Microwave Sounding Unit-A (AMSU-A) observations on the short-range forecast in East Asia (EA) was investigated for the Northern Hemispheric (NH) summer and winter months, using the Forecast Sensitivity to Observations (FSO) method. For both periods, the contribution of radiosonde (TEMP) to the EA forecast was largest, followed by AIRCRAFT, AMSU-A, Infrared Atmospheric Sounding Interferometer (IASI), and the atmospheric motion vector of Communication, Ocean and Meteorological Satellite (COMS) or Multi-functional Transport Satellite (MTSAT). The contribution of AMSU-A sensor was largely originated from the NOAA 19, NOAA 18, and MetOp-A (NOAA 19 and 18) satellites in the NH summer (winter). The contribution of AMSU-A sensor on the MetOp-A (NOAA 18 and 19) satellites was large at 00 and 12 UTC (06 and 18 UTC) analysis times, which was associated with the scanning track of four satellites. The MetOp-A provided the radiance data over the Korea Peninsula in the morning (08:00~11:30 LST), which was important to the morning forecast. In the NH summer, the channel 5 observations on MetOp-A, NOAA 18, 19 along the seaside (along the ridge of the subtropical high) increased (decreased) the forecast error slightly (largely). In the NH winter, the channel 8 observations on NOAA 18 (NOAA 15 and MetOp-A) over the Eastern China (Tibetan Plateau) decreased (increased) the forecast error. The FSO provides useful information on the effect of each AMSU-A sensor on the EA forecasts, which leads guidance to better use of AMSU-A observations for EA regional numerical weather prediction.

Comparison of temperature Derived from the Microwave Sounding Unit and Radiosonde Observation Data in Korea (한반도 지역의 마이크로파 위성자료와 고층관측자료의 비교)

  • 김소현;황병준;안명환;정효상;김금란
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.1
    • /
    • pp.47-54
    • /
    • 2000
  • We compared the satellite observed temperature with the radiosonde observed temperature in the Korean Peninsula. The radiosonde observed data were obtained from four upper air observation stations in the Korean Peninsula from 1981 to 1998, and were compared with the satellite observed data of the channel-2 and channel-4 of microwave sounding unit(MSU) on board NOAA series of polar-orbiting satellites. The radiosonde data were reconstructed from radiosonde T$_b$ using MSU weighting function. The monthly climatology shows radiosonde T$_{b2}$ is higher than MSU T$_{b2}$ in summer. The correlation between MSU T$_{b2}$ and radiosonde T$_{b2}$ is 0.72-0.76 and 0.73-0.81 between MSU T$_{b4}$ and radiosonde T$_{b4}$. The T$_{b2}$ show a positive trend and the T$_{b4}$ has a negative trend during the 18 years.

A Study on the Physical Oceanographic in the Mouth of the Nakdong River (낙동강 하구의 물리적 해황에 관한 연구)

  • 윤갑동
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.24 no.2
    • /
    • pp.65-70
    • /
    • 1988
  • A series of echo-sounding and current measurements as well as the drogue and drift bottle experiments were carried out in the mouth of the Nakdong river from April 1986 to August 1987: Several sand bars and sea channels are formed by reclaiming and dredging work in the river. The main stream of the river is separated into east and west branch channel. The tidal current speed of the west channel is faster than of the east channel in 1986, but is reverse in 1987 to that in 1986.

  • PDF

Calibration of frequency propagation channel sounder based on five-port reflectometer

  • Yem Van;Braga Judson;Huyart B;Begaud X;de Sousa F.R;Huyen Nguyen Bich
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.23-26
    • /
    • 2004
  • Five-port reflectometer which consists of a ring with 5 arms (two inputs, three outputs) and three RF power detectors has been used as a vector network analyser, a demodulator in the homodyne receiver as well as in Phase Looked Loop (PLL) and so on. Calibration of five-port reflectometer is an important task. In this paper, we present a calibration method of five-port for a propagation channel sounder. The method is based on measurement of the phase differences between the three voltages at the five-port's outputs in order to determine the ratio of two input incident waves. The frequency channel sounder based on five-port is calibrated for each frequency from 2.2 GHz to 2.6 GHz with 1 MHz step. This method can also determine the absolute delays of each propagation path in the propagation channel. The calibration method is validated using measurement data.

  • PDF

Hydrometeors and Atmospheric Thermal Structure Derived from the Infrared and Microwave Satellite Observations: Infrared Interferometer Spectrometer (IRIS) and Microwave Sounding Unit (MSU) (적외선과 마이크로파 위성관측에서 유도된 대기물현상 및 대기 열적 상태: 적외선 간섭분광계 (IRIS)와 Microwave Sounding Unit)

  • Yoo, Jung-Moon;Song, Hee-Young;Lee, Hyun-A;Koo, Gyo-Sook
    • Atmosphere
    • /
    • v.12 no.4
    • /
    • pp.69-90
    • /
    • 2002
  • The infrared and microwave satellite observations have been used to derive the information of hydrometeors (i.e., cloud and precipitation) and atmospheric temperature. The observations were made by the Nimbus-4 Infrared Interferometer Spectrometer (IRIS) in 1970, and by the Microwave Sounding Unit (MSU) during the period 1980-99, which had channel 1~4 (Chl~4). The IRIS, which has a field of view of ~100 km, has been utilized to examine the cirrus and marine stratus clouds. The cirrus and stratus distributions were obtained, respectively, based on the spectral difference in the infrared window region, and the absorption of water vapor and $CO_2$ in the spectral region $870-980cm^{-1}$. The MSU Ch1 data has been used for low tropospheric temperature and hydrometeors, while the Ch2, Ch3 and Ch4, respectively, for the thermal state of midtroposphere, tropopause, and lower stratosphere. The climatic aspects of El Ni$\tilde{n}$o, Quasi-Biennial Oscillation (QBO) and temperature trends over the globe are discussed with the MSU data. This study suggests that the IRIS and MSU data are useful for monitoring the hydrometeors and atmospheric thermal state in climate system.

Study on MMSE Interpolation Schemes Using Multiple Symbols (다중 심볼을 이용한 MMSE 보간 기법에 대한 연구)

  • Jo, Jun-Ho;Choi, Seyeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6478-6483
    • /
    • 2013
  • This paper presents the idea of interpolating between multiple sounding bursts to estimate the individual channels of a MIMO scenario. The performance of the proposed technique depends on the $f_dT$ product and the number of transmit and receive antennas. In particular, this technique can be effective if the $f_dT$ product is not too high and the number of antennas is not too large. Furthermore, there is a considerable difference in the performance of the 16 channels in the $4{\times}4$ MIMO case because the sounding bursts spread farther apart with time, meaning that the Doppler in the channel causes a greater error for the channels.

Characterization of Wireless Feedback Channels Based on Sounding Measurements on a Side of a Highway (고속도로변 측정데이터를 이용한 무선 궤환 채널 특성)

  • Moon, Woo-Sik;Im, Sung-Bin;Kim, Hyun-Chae;Kwon, Nag-Won
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.305-306
    • /
    • 2008
  • In this paper, we measured the wireless feedback channel near a highway, and analysis results from the measured sample data are described. For characterizing the channel properties, W-CDMA signal of 2GHz frequency, 5MHz bandwidth and 10ms period are used. The scattering function, delay power profile, delay spread, and Doppler spread are measured.

  • PDF

THE EFFECT OF ATMOSPHERIC SCATTERING AS INFERRED FROM THE ROCKET-BORNE UV RADIOMETER MEASUREMENTS

  • Kim, Jhoon
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.87-93
    • /
    • 1997
  • Radiometers in UV and visible wavelengths were onboard the Korean Sounding Rocket(KSR)-1 and 2 which were launched on June 4th and September 1st, 1993. These radiometers were designed to capture the solar radiation during the ascending period of the rocket flight. The purpose of the instrument was to measure the vertical profiles of stratospheric ozone densities. Since the instrument measured the solar radiation from the ground to its apogee, it is possible to investigate the altitude variation of the measured intensity and to estimate the effect of atmospheric scattering by comparing the UV and visible intensity. The visible channel was a reference because the 450-nm wavelength is in the atmospheric window region, where the solar radiation is transmitted through the atmosphere without being absorbed by other atmospheric gases. The use of 450-nm channel intensity as a reference should be limited to the altitude ranges above the certain altitudes, say 20 to 25km where the signals are not perturbed by atmospheric scattering effects.

  • PDF

The Analysis of Typhoon Center Location and Intensity from NOAA Satellite Microwave Data (NOAA/MUS 자료를 이용한 태풍 중심의 위치및 강도 분석)

  • 신도식;서애숙;김용상;이미선
    • Korean Journal of Remote Sensing
    • /
    • v.11 no.2
    • /
    • pp.29-42
    • /
    • 1995
  • A typhoon center location and its intensity from the 54.96GMz channel of Microwave Sounding Unit(MSU) on board the NOAA satellite is analyzed. NOAA satellite MSU channel 3 data may delineate the development and dissipation of the upper tropospheric warm core associated with a typhoon. The typhoon warm core is related to microwave imagery of 250hPa temperature field (54.96GMz). The typhoon center intensity, surface center pressure and maximum wind speed at the eye well, correlate to horozontal Laplacian of an upper tropospheric temperature field. The typhoon center is found from the analysis of 250hPa temperature field. The excellent correlation is found between the horizontal Laplacian of an tropospheric temperature field and surface maximum wind speed, another correlation is found between the warm temperature anomaly and surface pressure anomaly.