• Title/Summary/Keyword: channel hopping

Search Result 147, Processing Time 0.024 seconds

Error Rate Performance of FH/MFSK Signal with Thermal Noise in the Partial Band Jamming Environments (부분대역 재밍 환경하에서 열잡음을 고려한 FH/MFSK 신호의 오솔특성)

  • 강찬석;안중수
    • The Journal of the Acoustical Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.47-54
    • /
    • 1993
  • Performance analysis is very important to transmit the high quality information and to construct the optimal system for the minimze the noise from the channel of spread spectrum system. In this paper the error rate performance is analyzed with computer simulation in noncoherent frequency hopping M-qry frequency shift keying(FH/MFSk) systems with regard to thermal noise under the partial band jamming environments. AS a result, in case the thermal noise is disregarded, bit error probability of system in jamming fraction ρ and Eb/Nj(bit energy to jamming power density) is reduced with the increase of K and in worst case 32FSK system is better than 2FSK system by 3.23dB with the variatio of Eb/Nj. In case thermal noise is considered, bit error probability of system by 3.23dB with the variation of Eb/Nj. In case thermal noise is considered, bit error probability of system are reduced with the increase of K and Eb/No(bit energy to thermal noise density). Bit error probability in connection with worst case ρ is not largely influenced form over the 14dB to K=1 and 8dB to K=5 accordingly thermal noise disregarding. These results may be useful for avoiding the common vulnerabilities when the spread spectrum system is designed.

  • PDF

A Study on the Implementation of Exciter in VHF Band (VHF대역 Exciter 구성에 관한 연구)

  • 박순준;황경호;박영철;정창경;차균현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.13 no.3
    • /
    • pp.239-254
    • /
    • 1988
  • In this paper an exciter which performs modulation and amplification is composed of high power(30dBm) VCO(Voltage Controlled Oscillator) using push-pull circuit. Modulation is FSK using PLL(Phase Locked Loop). A single loop PLL synthesizer having sequency range of 42.5-100.5MHz, 25KHz channel spacing and switching time of 1msec converts down the exciter VCO frequency to 1.25MHz. This signal mixed with the FSK modulated signal coming in the phase detector of exciter. The acquisition time of exciter for frequency hoppng is less than 200usec, so the total acquisition time for transmission is less that 1.5msec. There is no need of additional power amplification because power amlifiction by high power VCO is high enough to communicate within near distance. The proposed frequency synthesizer is not complex so it is suitable for low cost slow frequency hopping spread spectrum communication.

  • PDF

Transmission Performance Analysis for cipher communication in aerial tactical communication link (항공전술 통신링크에서 암호통신을 위한 전송성능 분석)

  • Hong, Jin-Keun;Park, Sun-Chun;Kim, Seng-Jo;Park, Jong-Wook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.63-70
    • /
    • 2005
  • LINK16 is a system which is designed to maximize performance in a particular tactical environment with high levels of jamming. In this paper, transmission performance of synchronization pattern for cipher communication in aerial tactical communication link is presented. Transmission architecture of operating mode (standard DP, P2SP, P2DP, P4mode) in LINK16 network is discussed, and an effect of synchronization pattern, a quality of degraded effect of transmission communication for collision probability between hopping frequencies and fading channel in crypto communication is analyzed.

Calculation of UWB Communication System Capacity with Timing litter (타이밍 지터를 고려한 UWB 통신 시스템 용량 계산)

  • 박장우
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.4
    • /
    • pp.767-773
    • /
    • 2004
  • An UWB communication system are a promising communication technique suitable for the current trends, which are requesting communication methods with the high throughputs and very high speed. A key feature of UWB communication systems is the very narrow pulse used in transmitting the data and PPM(Pulse Position Modulation) for modulating the data. So, the timing accuracy is very important. It is very important to accurately analyze the effect of the timing jitter on the performance of UWB communication systems. In this paper, the methods of analyzing the timing jitter effects on UWB communication systems are introduced. In particular, the channel capacities with timing jitter are calculated including the multiuser access interference.

A Study on Analysis and Applications of Multi-user TH-PAM UWB System (다중 사용자 환경에서 TH-PAM UWB 시스템의 데이터 및 이미지 전송 성능 분석에 관한 연구)

  • Bae, Jin-Hwa;Sung, Tae-Kyung;Kim, Cheol-Seong;Kim, Dong-Sik;Weon, Young-Su;Cho, Hyung-Rae
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2008.05a
    • /
    • pp.69-73
    • /
    • 2008
  • In this paper, analytical methods for calculating the average probability of bit error of time hopping pulse position modulation ultra wideband (TH-PPM UWB) system are given. For the multi-user DS-PAM UWB system, the bipolar pulse amplitude modulation is used in order to achieve better performance. As we know, more attention is paid to the TH-PPM UWB systems recently. In this paper, we first introduce the accurate BER calculation methods of the multi-user TH-PPM UWB systems and then give the performance analysis over the ideal AWGN channel and a correlation receiver. Furthermore, we also introduce their applications in image transmission and data transmission and give the simulation results. The analytical method yields simple and exact formulas relating the performance to the system parameters.

  • PDF

Implementation of Multi-channel Communication System for Drone Swarms Control (군집 드론의 동시제어를 위한 멀티채널 송신 시스템 구현)

  • Lee, Seong-Ho;Han, Kyong-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.179-185
    • /
    • 2017
  • Communication technologies hold a significant place in the swarm flight of drones for surveillance, inspection of disasters and calamities, entertainment performances, and drone collaborations. A GCS(ground control station) for the control of drone swarms needs its devoted communication method to control a large number of drones at the same time. General drone controllers control drones by connecting transmitters and drones in 1:1. When such an old communication method is employed to control many drones simultaneously, problems can emerge with the control of many transmitter modules connected to a GCS and frequency interference among them. This study implemented a transmitter controller to control many drones simultaneously with a communication chip of 2.4GHz ISM band and a Cortex M4-based board. It also designed a GCS to control many transmitter controllers via a network. The hierarchical method made it possible to control many more drones. In addition, the problem with frequency interference was resolved by implementing a time- and frequency-sharing method, controlling many drones simultaneously, and adding the frequency hopping feature. If PPM and S.BUS protocol features are added to it, it will be compatible with more diverse transmitters and drones.

Performance Evaluation of Time Hopping Pulse Position Modulated Ultra-Wideband System for Home Sensor Network (홈 센서 네트워크를 위한 주파수 도약 펄스 위치 변조된 초 광대역 시스템의 성능 평가)

  • Roh, Jae-Sung
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.3
    • /
    • pp.268-275
    • /
    • 2006
  • The rapid proliferation of in-home and office information applications and services is driving the need for new wireless technologies enabling wideband short range multimedia communications. Due to the growing demand for higher quality media and faster wireless connections, several IEEE standardization groups are considering very high data rate alternatives physical layer(s) for Wireless Personal Area Network (WPAN). The Ultra Wide Band (UWB) multiple access technology based on very narrow pulse transmission, is one viable candidate for these applications providing very high bit rates services, low power consumption and accurate positioning capability. In this paper we provide a methodology to evaluate the UWB system BER performance in UWB wireless fading networks with power controlled UWB devices are considered. Results can be used to analyze the performance of a given network topology and to provide useful design ideas for an UWB home sensor network.

  • PDF

A survey on Rendezvous Algorithms in Cognitive Radio Networks Under Jamming Attacks (재밍 공격 상황을 고려한 인지무선 네트워크에서의 랑데뷰 알고리즘들에 관한 분석)

  • Martin, Robin;Kim, Yongchul
    • Convergence Security Journal
    • /
    • v.21 no.1
    • /
    • pp.209-219
    • /
    • 2021
  • The problem of congestion in the licensed radio channels spectrum can be solved by Cognitive Radio Networks (CRN). Several algorithms exist to ensure the rendezvous between Secondary Users (SUs), they are increasingly efficient, allowing faster rendezvous under multiple scenarios. In parallel, several jamming algorithms are developed to counter rendezvous which are also improving. The goal in CRN is to ensure the rendezvous by warding such jammers with robust algorithms. In this paper, we classify various jamming techniques and analyze the performance of various well-known rendezvous algorithms under jamming attacks.

Q Learning MDP Approach to Mitigate Jamming Attack Using Stochastic Game Theory Modelling With WQLA in Cognitive Radio Networks

  • Vimal, S.;Robinson, Y. Harold;Kaliappan, M.;Pasupathi, Subbulakshmi;Suresh, A.
    • Journal of Platform Technology
    • /
    • v.9 no.1
    • /
    • pp.3-14
    • /
    • 2021
  • Cognitive Radio network (CR) is a promising paradigm that helps the unlicensed user (Secondary User) to analyse the spectrum and coordinate the spectrum access to support the creation of common control channel (CCC). The cooperation of secondary users and broadcasting between them is done through transmitting messages in CCC. In case, if the control channels may get jammed and it may directly degrade the network's performance and under such scenario jammers will devastate the control channels. Hopping sequences may be one of the predominant approaches and it may be used to fight against this problem to confront jammer. The jamming attack can be alleviated using one of the game modelling approach and in this proposed scheme stochastic games has been analysed with more single users to provide the flexible control channels against intrusive attacks by mentioning the states of each player, strategies ,actions and players reward. The proposed work uses a modern player action and better strategic view on game theoretic modelling is stochastic game theory has been taken in to consideration and applied to prevent the jamming attack in CR network. The selection of decision is based on Q learning approach to mitigate the jamming nodes using the optimal MDP decision process

Full-scale bridge expansion joint monitoring using a real-time wireless network

  • Pierredens Fils;Shinae Jang;Daisy Ren;Jiachen Wang;Song Han;Ramesh Malla
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.4
    • /
    • pp.359-371
    • /
    • 2022
  • Bridges are critical to the civil engineering infrastructure network as they facilitate movement of people, the transportation of goods and services. Given the aging of bridge infrastructure, federal officials mandate visual inspections biennially to identify necessary repair actions which are time, cost, and labor-intensive. Additionally, the expansion joints of bridges are rarely monitored due to cost. However, expansion joints are critical as they absorb movement from thermal effects, loadings strains, impact, abutment settlement, and vehicle motion movement. Thus, the need to monitor bridge expansion joints efficiently, at a low cost, and wirelessly is desired. This paper addresses bridge joint monitoring needs to develop a cost-effective, real-time wireless system that can be validated in a full-scale bridge structure. To this end, a wireless expansion joint monitoring was developed using commercial-off-the-shelf (COTS) sensors. An in-service bridge was selected as a testbed to validate the performance of the developed system compared with traditional displacement sensor, LVDT, temperature and humidity sensors. The short-term monitoring campaign with the wireless sensor system with the internet protocol version 6 over the time slotted channel hopping mode of IEEE 802.15.4e (6TiSCH) network showed reliable results, providing high potential of the developed system for effective joint monitoring at a low cost.