• Title/Summary/Keyword: channel estimation error (CEE)

Search Result 2, Processing Time 0.019 seconds

Cognitive Relay Networks with Underlay Spectrum Sharing and Channel Estimation Error: Interference Probability and BER Analysis

  • Ho-Van, Khuong
    • Journal of Communications and Networks
    • /
    • v.16 no.3
    • /
    • pp.301-304
    • /
    • 2014
  • This paper proposes accurate interference probability and bit error rate formulas for cognitive relay networks with underlay spectrum sharing and channel estimation error (CEE). Numerous results reveal that the CEE not only degrades the performance of secondary systems (SSs) but also increases interference power caused by SSs to primary systems (PSs), eventually unfavorable to both systems. A solution to further protect PSs from this effect through reducing the power of secondary transmitters is investigated and analyzed.

Effect of Outdated Channel Estimates on Multiple Antennas Multiple Relaying Networks

  • Wang, Lei;Cai, Yueming;Yang, Weiwei;Yan, Wei;Song, Jialei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.5
    • /
    • pp.1682-1701
    • /
    • 2015
  • In this paper, we propose an intergraded unified imperfect CSI model and investigate the joined effects of feedback delay and channel estimation errors (CEE) for two-hop relaying systems with transmit beamforming and relay selection. We derived closed-form expressions for important performance measures including the exact analysis and lower bounds of outage probability as well as error performance. The ergodic capacity is also included with closed-form results. Furthermore, diversity and coding gains based on the asymptotic analysis at high SNRs are also presented, which are simple and concise and provide new analytical insights into the corresponding power allocation scheme. The analysis indicates that delay effect results in the coding gain loss and the diversity order loss, while CEE will merely cause the coding gain loss. Numerical results verify the theoretical analysis and illustrate the system is more sensitive to transmit beamforming delay compared with relay selection delay and also verify the superiority of optimum power allocation. We further investigate the outage loss due to the CEE and feedback delays, which indicates that the effect of the CEE is more influential at low-to-medium SNR, and then it will hand over the dominate role to the feedback delay.