• Title/Summary/Keyword: channel assessment

Search Result 282, Processing Time 0.022 seconds

Electrical Characteristics Measurement of Eddy Current Testing Instrument for Steam Generator in NPP (원전 증기발생기 와전류검사 장치의 전기적 특성 측정)

  • Lee, Hee-Jong;Cho, Chan-Hee;Yoo, Hyun-Joo;Moon, Gyoon-Young;Lee, Tae-Hun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.5
    • /
    • pp.465-471
    • /
    • 2013
  • A steam generator in nuclear power plant is a heatexchager which is used to convert water into steam from heat produced in a nuclear reactor core, and the steam produced in steam generator is delivered to the turbine to generate electricity. Because of damage to steam generator tubing may impair its ability to adequately perform required safety functions in terms of both structural integrity and leakage integrity, eddy current testing is periodically performed to evaluate the integrity of tubes in steam generator. This assessment is normally performed during a reactor refueling outage. Currently, the eddy current testing for steam generator of nuclear power plant in Korea is performed in accordance with KEPIC & ASME Code requirements, the eddy current testing system is consists of remote data acquisition unit and data analysis program to evaluate the acquired data. The KEPIC & ASME Code require that the electrical properties of remote data acquisition unit, such as total harmonic distortion, input & output impedance, amplifier linearity & stability, phase linearity, bandwidth & demodulation filter response, analog-to-digital conversion, and channel crosstalk shall be measured in accordance with the KEPIC & ASME Code requirements. In this paper, the measurement requirements of electrical properties for eddy current testing instrument described in KEPIC & ASME Code are presented, and the measurement results of newly developed eddy current testing instrument by KHNP(Korea Hydro & Nuclear Power Co., LTD) are presented.

Applications and Perspectives of Fluvial Biogeomorphology in the Stream Management of South Korea (우리나라 하천 관리에서 생물지형학의 적용과 전망)

  • Kim, Daehyun;Kim, Won;Kim, Eunsuk;Ock, Giyoung;Jang, Chang-Lae;Choi, Mikyoung;Cho, Kang-Hyun
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.1
    • /
    • pp.1-14
    • /
    • 2020
  • In fluvial and riparian ecosystems, biogeomorphological research has considered the complex, multi-way relationships between biological and hydro-geomorphological components over a wide range of spatial and temporal scales. In this review, we discussed the scope and processes of fluvial biogeomorphology by explaining (1) the multi-lateral interactions between organisms and hydrogeomorphic conditions, (2) the relationships between biodiversity and habitat heterogeneity, and (3) the effects of disturbance on ecosystem patterns. Over time, an organism-landform complex along streams transitions in the sequences of geomorphic, pioneer, biogeomorphic, and ecological stages. Over space, water flow and sediment distributions interact with vegetation to modify channel topography. It is the habitat heterogeneity in streams that enhances riparian biodiversity. However, in the areas downstream of a dam, habitat types and conditions are substantially damaged and biodiversity should be reduced. In South Korea, riparian vegetation flourishes in general and, in particular, invasive species actively colonize in accordance with the changes in the fluvial conditions driven by local disturbances and global climate change. Therefore, the importance of understanding reciprocal relationships between living organisms and hydrogeomorphic conditions will ever increase in this era of rapid climate change and anthropogenic pressure. The fluvial biogeomorphic framework reviewed in this article will contribute to the ecological management and restoration of streams in Korea.

Applications of SMCRE Model on Social Amplification of MERS Risk Information and its Implications (메르스 위험정보유통의 사회적 확산에 관한 SMCRE 모형의 적용과 함의)

  • Choi, Choong-Ik;Bae, Suk-Kyeong;Kim, Chul-Min
    • Journal of Distribution Science
    • /
    • v.14 no.6
    • /
    • pp.89-98
    • /
    • 2016
  • Purpose - This article tackles risk communication issues and aims to address the characteristics of MERS risk information distribution in South Korea, and secondly to examine the communicative behavior of the public health authority in terms of the quality of communication strategies. Thirdly, the study attempts to figure out the risk communication to cope with MERS through the applications of SMCRE model in chronological order. We employ the social amplification of risk framework for analyzing the emergent public response as one of the main approaches. Research Design, Data and Methodology - The main framework of this study is theoretically based on the social amplification of risk, which describes signals about risk transmitted and processed by individuals and social groups. The model also reflects the interactions between social groups and institutes about disaster-related risk issues, which are potential amplifiers or attenuators of communication signals. S-M-C-R-E Model is methodologically employed to examine the social amplification for MERS risk information in each period, which we defined operationally. The proposed methodology allows the assessment of effectiveness and ineffectiveness on risk communication to be conceptualized as a countermeasure against disasters. The paper focuses on exploring how social risk amplification can be applied and organized in each stage. Results - The SMCRE model describes the exchange of risk information and is also applied to all forms of communication between stakeholders including public health authority, local government and media. Each factor of risk communication includes source, message, channel, receiver and effect. The results support that the effective risk communication involves not only the improved reliability of public health authority as a key factor of risk communication, but also a close cooperation and good collaboration with local governments. It does not seem to be possible that the government-initiated risk communication based on controllability and management cope effectively with infectious disease in early stage. The results of this study imply that the shared risks between local, regional and national authorities can enhance risk communication system. Conclusions - The study supports that the disparities in how disaster-related risk information is interpreted and coded, have made effective risk communication and public sense-making impeded. Our findings support a more communicative discussion about the role of risk information sharing between governments for the improvement of emergency management and underline the importance of social elements in the risk communication, such as relationship and trust building. Findings suggest that trust building between stakeholders could be added to help explain the processes of social amplification and attenuation of risk. It would be recommended that the continuous risk communication with all the involved stakeholders will be able to help national health promotion policy to be improved regarding emergency management. Furthermore, risk communication has to be a scientific approach for the communication pertaining to potentially sensitive or controversial situations with public concerns and low public trust.

Riparian Connectivity Assessment Using Species Distribution Model of Fish Assembly (어류군집의 종분포모형을 이용한 수변지역 연결성 평가)

  • Jeong, Seung Gyu;Lee, Dong Kun;Ryu, Ji Eun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.2
    • /
    • pp.17-26
    • /
    • 2015
  • River corridors facilitate dispersal and movement and prevent local extinction of species. As a result of stream restoration projects, which include installation of waterfront and flood control structures, the number of animals, which rely on river corridor, is decreasing. For the study, factors affecting fish assembly were extracted by a species distribution model with the fish data collected from the Seom River in Hoengseong County and City of Wonju, Ganwon Province, Korea between March to October 2013. The riparian connectivity was assessed using species richness and rarity. According to result of the field survey, there were 38 species and 7,061 individuals for fish. The analysis suggests the following. Firstly, factors affecting fish richness in species distribution model results are shown to be velocity, riffle, riparian width, and water width. The accuracy of the model proves to be suitable with the correlation coefficient of 0.83 and MAPE of 19.2%. Secondly, the low rarity area is shown to be straight streams in Jeon river near to Hongseong County and the high rarity area to be streams with large width, existing alluvial area at channel junction between Jeon river and Seom river. Thirdly, according to connectivity results, areas where weirs are installed or riparian buffer area is removed showed low connectivity. The areas where farmland near riparian and forest areas showed high connectivity. The results of this study can be utilized to improve current facilities and enhance connectivity as a restoration guide.

Evaluation of Characteristics of G-class Cement for Geothermal Well Cementing (지열 발전정 시멘팅을 위한 G-class 시멘트 특성 평가에 관한 연구)

  • Won, Jongmuk;Jeon, Jongug;Park, Sangwoo;Choi, Hangseok
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.5
    • /
    • pp.29-38
    • /
    • 2013
  • The G-class cement is commonly used in practice for geothermal well cementing in order to protect a steel casing that is designed to transport hot water/steam from deep subsurface to ground surface during operating a geothermal power plant. In order to maintain optimal performance of geothermal wells, physical properties of the cementing material should be satisfactory. In this paper, relevant factors (i.e., groutability, uniaxial compression strength, thermal conductivity and free fluid content) of the G-class cement were experimentally examined with consideration of various water-cement (w/c) ratios. Important findings through the experiments herein are as follows. (1) Groutability of the G-class cement increases by adding a small dose of retarder. (2) There would be a structural defect caused when the w/c ratio is kept higher in order to secure groutability. (3) Thermal conductivity of the G-class cement is small enough to prevent heat loss from hot steam or water to the outer ground formation during generating electricity. (4) The G-class cement does not form free water channel in cementing a geothermal well. (5) The Phenolphthalein indicator is applicable to the distinction of the G-class cement from the drilling mud.

Numerical Analysis of Grout Flow and Injection Pressure Affected by Joint Roughness and Aperture (절리 거칠기와 간극 변화에 따른 그라우트 유동과 주입압에 관한 수치해석적 연구)

  • Jeon, Ki-Hwan;Ryu, Dong-Woo;Kim, Hyung-Mok;Park, Eui-Seob;Song, Jae-Jun
    • Tunnel and Underground Space
    • /
    • v.20 no.2
    • /
    • pp.82-91
    • /
    • 2010
  • Grouting technology is one of the ground improvement methods used in water controlling and reinforcement of rock mass in underground structure construction. It is necessarily required to find out the characteristics of grout flow through discontinuities in a rock mass for an adequate grout design and performance assessment. Laminar flow is not always applicable in simulating a grout flow in a rock mass, since the rock joints usually have apertures at a micro-scale and the flow through these joints is affected by the joint roughness and the velocity profile of the flow changes partially near the roughness. Thus, the influence of joint roughness and aperture on the grout flow in rough rock joint was numerically investigated in this study. The commercial computational fluid dynamics code, FLUENT, was applied for this purpose. The computed results by embedded Herschel-Bulkley model and VOF (volume of fluid) model, which are applicable to simulate grout flow in a narrow rock joint that is filled with air and water, were well compared with that of analytical results and previously published laboratory test for the verification. The injection pressure required to keep constant injection rate of grout was calculated in a variety of Joint Roughness Coefficient (JRC) and aperture conditions, and the effect of joint roughness and aperture on grout flow were quantified.

Assessment of the Effect of Geographic Factors and Rainfall on Erosion and Deposition (지형학적 인자 및 강우량에 따른 침식 및 퇴적의 영향 평가)

  • Yu, Wan-Sik;Lee, Gi-Ha;Jung, Kwan-Sue
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.103-112
    • /
    • 2011
  • This study aims to demonstrate the relationship between various factors and soil erosion or deposition, simulated from distributed rainfall-sediment-runoff model applications. We selected area, overland flow length, local slope as catchment representative characteristics among many important geographic factors and also used the grid-based accumulated rainfall as a representative hydro-climatic factor to assess the effect of these two different types of factors on erosion and deposition. The study catchment was divided based on the Strahler's stream order method for analysis of the relationship between area and erosion or deposition. Both erosion and deposition increased linearly as the catchment area became larger. Erosion occurred widely throughout the catchment, whereas deposition was observed at the grid-cells near the channel network with short overland flow lengths and mild slopes. In addition, the relationship results between grid-based accumulated rainfall and soil erosion or deposition showed that erosion increased gradually as rainfall amount increased, whereas deposition responded irregularly to variations in rainfall. Within the context of these results, it can be concluded that deposition is closely related with the geographic factors used in this study while erosion is significantly affected by rainfall.

Analysis of Streamflow Characteristics of Boryeong-dam Watershed using Global Optimization Technique by Infiltraion Methods of CAT (CAT 모형의 침투해석방법별 전역최적화기법을 이용한 보령댐 유역의 유출 특성 변화 분석)

  • Park, Sanghyun;Kim, Hyeonjun;Jang, Cheolhee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.412-424
    • /
    • 2019
  • In this study, the changes of the streamflow characteristics of the watershed were analysed depending on the infiltration methods of CAT. The study area, Boryeong-dam watershed located in Chungcheongnam-do area, has been suffered from severe drought in recent years and stabilized regarding on the storage rate through efforts such as constructing a channel connecting the upstream of Boryeong-dam from the downstream of the Geum river. In this study, the effects of soil infiltration parameters on the watershed streamflow characteristics were analyzed by the infiltration methods of CAT such as Rainfall Excess, Green&Ampt and Horton. And the parameter calibrations were conducted by SCEUA-P, a global optimization technique module of the PEST, the package for parameter optimization and uncertainty analysis, to compare the yearly variations of soil parameters for infiltration methods of CAT. In addition, the streamflow characteristics were analyzed for three infiltration methods by applying three different scenarios, such as applying calibrated parameters for every years to simulate the model for each years, applying calibrated parameters for the entire period to simulate the model for entire period, and applying the average value of yearly calibrated parameters to simulate the model for entire period.

An Exploratory Study on the Preparation for the High School Credit System of the Home Economics Education Community through the Analysis of Operation Case of High School Credit System Research School (고교학점제 연구학교 운영 사례 분석을 통한 가정과 교육공동체의 고교학점제 준비 방안에 대한 탐색적 연구)

  • Han, Ju
    • Journal of Korean Home Economics Education Association
    • /
    • v.33 no.2
    • /
    • pp.1-25
    • /
    • 2021
  • The purpose of this paper is to explore ways to prepare for the high school credit system in the home economics educational community through the case of high school credit system research school operation. To this end, the operation process of H high school in Gangwon-do, which operated a high school credit system in 2019, was monitored for 5 months, and surveys and interviews were conducted with students, parents, and teachers to determine the operation of the curriculum. Suggestions based on the case of H high school's operation of the high school credit system for home economics educational community are as follows. Home economics teachers should make active efforts to provide attractive and meaningful home economics lessons to their students by improving instruction and assessment, and implementing a variety of elective courses within the subject of home economics, including collaborative online curricula. Home economics teacher communities and related associations should build a solid network that connects local home economics subject research groups, share information related to curriculum operation, and use it as a channel for disseminating class research results. Home economics teacher training institutions should innovate the curriculum to help prospective teachers develop the ability to guide multiple classes in line with the changing teacher training policy, and develop and provide high-quality online and offline programs for field teacher re-education.

Analysis of Tree Roughness Evaluation Methods Considering Depth-Dependent Roughness Coefficient Variation (수심별 조도계수 변화를 고려한 수목 조도공식 특성 분석)

  • Du Han Lee;Dong Sop Rhee
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.3
    • /
    • pp.51-63
    • /
    • 2023
  • Riverine tree management is crucial in realizing a balance between flood control and ecological preservation, which requires an accurate assessment of the impact of trees on river water elevations. In this study, eight different formulas for evaluating vegetation roughness considering the drag force acting on trees, were reviewed, and the characteristics and applicability of these methods were evaluated from a practical engineering perspective. The study compared the characteristics of vegetation roughness measurement methods for calculated roughness coefficients at different water depths and analyzed factors such as effects of tree canopy width, tree density and diameter, and tree stiffness coefficient, and water level estimation results. A comparison of roughness coefficients at the same water depths revealed that the Kouwen and Fathi-Moghadam formulas and the Fischenich formula yield excessive drag coefficients compared to other formulas. Factors such as channel geometry, tree diameter, and tree density showed varying trends depending on the formula but did not exhibit excessive outliers. Formulas considering the tree stiffness coefficient, such as the Freeman et al.'s formula and the Whittaker et al.'s formula, showed significant variations in drag coefficients depending on the stiffness coefficient. When applied to small- and medium-sized virtual rivers in South Korea using the drag coefficient results from the eight formulas, the results indicated a maximum increase in water level of approximately 0.2 to 0.4 meters. Based on this review, it was concluded that the Baptist et al., Huthoff et al., Cheng, Luhar, and Nepf's formulas, which exhibit similar characteristics and low input data uncertainties, are suitable for practical engineering applications.