• Title/Summary/Keyword: channel access time

Search Result 504, Processing Time 0.028 seconds

A new WDM/TDM protocol for very high speed optical networks (고속광통신망용 새로운 WDM/TDM 프로토콜)

  • 이상록;이성근;박진우
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.2
    • /
    • pp.50-58
    • /
    • 1996
  • This paper proposes the channel-access protocol suitable to a very high speed photonic WDM network with star configuration, which can provide a high channel utilization and insensitivity to the propagation delay. The proposed protocol employs a control channel and a simple status table to deal with the propagation delay which has been a major limiting factor in the performance of the very high speed optical communication networks. The control channel transmits control information in order to reserve access on data channels, and each node constitutes a status table after the reception of control pckets which holds information about the availbility of destination node and data channel. The proposed protocol is insensitive to the propagation delay time by removing necessity of the retransmission and by allowing parallel transmission of control packet and data packets. It is proved in analysis and discrete event simulation that the proposed protocol is superior in throughput and mean delay, especially at the high load conditions compared to the existing high speed channel-access protocols.

  • PDF

Rendezvous Issues in AD Hoc Cognitive Radio Networks

  • Joshi, Gyanendra Prasad;Nam, Seung Yeob;Kim, Sung Won
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.3655-3673
    • /
    • 2014
  • Rendezvous is a process of two or more cognitive radio nodes gathering on the same channel at the same time for a negotiation to establish data communications. This paper discusses rendezvous issues in cognitive radio networks. It details why rendezvous is an issue in cognitive radio networks and how rendezvous works. It classifies channel access methods, and details sequence-based channel-hopping methods. It surveys existing works on blind rendezvous and compares the proposed algorithms in terms of the maximum time to rendezvous. This paper discusses the properties that an efficient channel-hopping rendezvous algorithm should have and illustrates common issues in the existing rendezvous methods. It also explains open research issues in the rendezvous area.

Multi-Channel MAC Protocol Using Statistical Channel Utilization for Cognitive Networks

  • Xiang, Gao;Zhu, Wen-Min;Park, Hyung-Kun
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.3
    • /
    • pp.273-276
    • /
    • 2010
  • Opportunistic spectrum access (OSA) allows unlicensed users to share licensed spectrum in space and time with no or little interference to primary users, with bring new research challenges in MAC design. We propose a cognitive MAC protocol using statistical channel information and selecting appropriate idle channel for transmission. The protocol based on the CSMA/CA, exploits statistics of spectrum usage for decision making on channel access. Idle channel availability, spectrum hole sufficiency and available channel condition will be included in algorithm statistical information. The model include the control channel and data channel, the transmitter negotiates with receiver on transmission parameters through control channel, statistical decision results (successful rate of transmission) from exchanged transmission parameters of control channel should pass the threshold and decide the data transmission with spectrum hole on data channel. The proposed protocol's simulation will show that proposed protocol does improve the throughput performance via traditional opportunistic spectrum access MAC protocol.

The Analysis of an Opportunistic Spectrum Access with a Strict T-preemptive Priority Discipline (엄격한 T-축출 우선순위 대기행렬을 이용한 기회 주파수 접근 방식의 성능 분석)

  • Kim, Kilhwan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.4
    • /
    • pp.162-170
    • /
    • 2012
  • We propose a new priority discipline called the strict T-preemptive priority discipline, and derive the waiting time distributions of each class in the strict T-preemptive priority M/G/1 queue. Using this queueing analysis, we evaluate the performance of an opportunistic spectrum access in cognitive radio networks, where a communication channel is divided into time slots, a licensed primary user is assigned to one channel, and multiple unlicensed secondary users may opportunistically exploit time slots unused by the primary user. We also present a numerical example of the analysis of the opportunistic spectrum access where the arrival rates and service times distributions of each users are identical.

Unified Optimal Power Allocation Strategy for MIMO Candidates in 3GPP HSDPA

  • Kim, Sung-Jin James;Kim, Ho-Jin;Lee, Kwang-Bok
    • ETRI Journal
    • /
    • v.27 no.6
    • /
    • pp.768-776
    • /
    • 2005
  • We compare the achievable throughput of time division multiple access (TDMA) multiple-input multiple-output (MIMO) schemes illustrated in the 3rd Generation Partnership Project (3GPP) MIMO technical report, versus the sum-rate capacity of space-time multiple access (STMA). These schemes have been proposed to improve the 3GPP high speed downlink packet access (HSDPA) channel by employing multiple antennas at both the base station and mobile stations. Our comparisons are performed in multi-user environments and are conducted using TDMA such as Qualcomm's High Data Rate and HSDPA, which is a simpler technique than STMA. Furthermore, we present the unified optimal power allocation strategy for HSDPA MIMO schemes by exploiting the similarity of multiple antenna systems and multi-user channel problems.

  • PDF

Optimized Medium Access Probability for Networked Control Systems (네트워크 제어 시스템을 위한 최적화된 매체 접근 확률)

  • Park, Pangun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.10
    • /
    • pp.2457-2464
    • /
    • 2015
  • Distributed Networked Control Systems (NCSs) through wireless networks have a tremendous potential to improve the efficiency of various control systems. In this paper, we define the State Update Interval (SUI) as the elapsed time between successful state vector reports derived from the NCSs. A simple expression of the SUI is derived to characterize the key interactions between the control and communication layers. This performance measure is used to formulate a novel optimization problem where the objective function is the probability to meet the SUI constraint and the decision parameter is the channel access probability. We prove the existence and uniqueness of the optimal channel access probability of the optimization problem. Furthermore, the optimal channel access probability for NCSs is lower than the channel access probability to maximize the throughput. Numerical results indicate that the improvement of the success probability to meet the SUI constraint using the optimal channel access probability increases as the number of nodes increases with respect to that using the channel access probability to maximize the throughput.

Closed-Loop Power Control for Code Division Multiple Access in Time-Varying Underwater Acoustic Channel (시변 수중 음향 채널에서 코드 분할 다중 접속 방식의 폐루프 전력 제어 기법)

  • Seo, Bo-Min;Cho, Ho-Shin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.12
    • /
    • pp.32-40
    • /
    • 2015
  • Code division multiple access (CDMA) is one of the promising medium access control scheme for underwater acoustic sensor networks due to its beneficial features such as robustness against frequency-selective fading and high frequency-reuse efficiency. In this paper, we design a closed-loop power control scheme for the underwater CDMA, to adapt time-varying acoustic channel. In the proposed scheme, sink node sends to sensor nodes the associated path loss which is acquired by uplink-channel analysis based on received packets from the sensor nodes. Then, sensor nodes adjust their transmission power in an adaptive manner to time-varying underwater acoustic channel, according to the informations sent by the sink node.

UMMAC: A Multi-Channel MAC Protocol for Underwater Acoustic Networks

  • Su, Yishan;Jin, Zhigang
    • Journal of Communications and Networks
    • /
    • v.18 no.1
    • /
    • pp.75-83
    • /
    • 2016
  • In this paper, we propose a multi-channel medium access control (MAC) protocol, named underwater multi-channel MAC protocol (UMMAC), for underwater acoustic networks (UANs). UMMAC is a split phase and reservation based multi-channel MAC protocol which enables hosts to utilize multiple channels via a channel allocation and power control algorithm (CAPC). In UMMAC, channel information of neighboring nodes is gathered via exchange of control packets. With such information, UMMAC allows for as many parallel transmissions as possible while avoiding using extra time slot for channel negotiation. By running CAPC algorithm, which aims at maximizing the network's capacity, users can allocate their transmission power and channels in a distributed way. The advantages of the proposed protocol are threefold: 1) Only one transceiver is needed for each node; 2) based on CAPC, hosts are coordinated to negotiate the channels and control power in a distributed way; 3) comparing with existing RTS/CTS MAC protocols, UMMAC do not introduce new overhead for channel negotiation. Simulation results show that UMMAC outperforms Slotted floor acquisition multiple access (FAMA) and multi-channel MAC (MMAC) in terms of network goodput (50% and 17% respectively in a certain scenario). Furthermore, UMMAC can lower the end-to-end delay and achieves a lower energy consumption compared to Slotted FAMA and MMAC.

Channel Selection for Spectrum Sharing in Wireless Networks

  • Park, Jae Cheol;Kang, Kyu-Min;Park, Seungkeun
    • ETRI Journal
    • /
    • v.38 no.5
    • /
    • pp.952-961
    • /
    • 2016
  • In this paper, we study a spectrum sharing network (SSN) where a spectrum sharing device (SSD) coexists with multiple wireless communication systems (WCSs) in the same channel. The SSD can operate with either a duty cycle (DC) channel access mechanism or a listen-before-talk (LBT) channel access mechanism, whereas WCSs operate with an LBT mechanism. An opportunistic channel selection scheme for the SSD in the SSN is first proposed to minimize the outage probability. The optimal data transmission time for the DC-based SSD is derived to further improve the outage probability. We also derive the exact and closed-form outage probability of the proposed channel selection in the SSN by assuming that the number of WCSs operating in each channel is uniformly distributed. The simulation results show that the proposed channel selection scheme outperforms other channel selection schemes. It was also observed that a DC-based SSD with an optimal data transmission time provides a better outage performance than an LBT-based SSD. As the number of available channels increases, the channel selection scheme plays an important role in minimizing the outage probability of the SSNs.

Likelihood Estimation Using Continuous-Time Markov Channels for Cognitive Radio Networks in Wireless LAN

  • Oo, Thant Zin;Thar, Kyi;Hong, Choong-Seon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06d
    • /
    • pp.262-264
    • /
    • 2012
  • Dynamic spectrum access and cognitive radio is a viable solution to solve congestion in ISM band. The dynamic environment of multi-channel wireless LAN is modeled by using continuous time Markov process. Bayes theorem is applied to infer channel access decisions dynamically to ensure current data transmission is switched to only likely candidate channels.