• Title/Summary/Keyword: change of coastal area

Search Result 484, Processing Time 0.025 seconds

Investigation of Coastal Erosion Status in Geojin Port Area (거진항 일대의 해안 침식 현황 조사 연구)

  • Kim, In-Ho;Song, Dong-Seob
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.1
    • /
    • pp.67-73
    • /
    • 2012
  • Coastal erosion and its impact on human activities as well as the economic damage and environmental conservation of coastal area is one of major concern in the national policies. In this study, we conducted physical investigations to evaluate effects of erosion in the Geojin beach, which is located nearby the Geojin Port, for a detecting of shoreline change and beach cross-sectional area. The results showed that significant coastal erosion of the Geojin beach has occurred by the complex resources of natural factor, such as rising sea level, storm surges, high wave, and man-made construction. Especially, due to the sand supplement from Jasan river, the section which is nearby the estuary of Jasan river is maintained as a stable beach, whereas beach erosion of the other site in GW04 section has been increased indeed. Therefore, we suggest that it is need to continuous monitoring using DGPS and various surveying techniques to prevent beach erosion onto the GW04 section.

Spatial distribution and temporal variation of hydrogeochemistry in coastal lagoons and groundwater on the eastern area of korea

  • Chanyoung Jeong;Soo Min Song;Woo-Hyun Jeon;Hee Sun Moon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.247-247
    • /
    • 2023
  • Coastal lagoons play a crucial role in water exchange, water quality, and biodiversity. It is essential to monitor and understand the dynamics of hydrogeochemistry in lagoon water and its groundwater to preserve and sustainably manage the groundwater-dependent ecosystems like coastal lagoons. This study investigated the spatial and temporal hydrogeochemical characteristics of coastal lagoon (Songjiho) and groundwater on the east coast of Korea. The concentrations of major ions, water isotopes, and nutrients (nitrogen and dissolved organic carbon) in lagoon water and groundwater were periodically monitored for one year. The study revealed that major ions and total dissolved solids (TDS) concentration were higher at deeper depths of aquifers and closer to the coastal area. The hydrogeochemical characteristics of coastal lagoon and groundwater chemistry were classified into two types, Ca-Mg-HCO3 and Na-Cl, based on their spatial location from inland to coastal area. Moreover, the hydrogeochemical characteristics of coastal lagoons and groundwater varied significantly depending on the season. During the wet season, the increased precipitation and evaporation lead to changes in water chemistry. As a result, the total organic carbon (TOC) of coastal lagoons increases during this season, likely due to increased runoff by rainfall whereas the variation of chemical compositions in the lagoon and groundwater were not significant because there is reduced precipitation, resulting in stable water levels and during the dry season. The study emphasizes the impact of spatial distribution and seasonal changes in precipitation, evaporation, and river discharge on the hydrogeochemical characteristics of the coastal aquifer and lagoon system. Understanding these impacts is crucial for managing and protecting coastal lagoons and groundwater resources.

  • PDF

Numerical Simulation of Effect on Atmospheric Flow Field by Development of Coastal Area (임해지역의 개발이 기상장에 미치는 영향예측)

  • Lee, Sang-Deug;Mun, Tae-Ryong
    • Journal of Environmental Science International
    • /
    • v.15 no.10
    • /
    • pp.919-928
    • /
    • 2006
  • The present study applied an atmospheric flow field model in Gwangyang-Bay which can predict local sea/land breezes formed in a complex terrain lot the development of a model that can predict short term concentration of air pollution. Estimated values from the conduct of the atmospheric flow field were used to evaluate and compare with observation data of the meteorological stations in Yeosu and the Yeosu airport, and the effect of micrometeorology of surround region by the coastal area reclamation was predicted by using the estimated values, Simulation results, a nighttime is appeared plainly land breezes of the Gwangyang-bay direction according to a mountain wind that formed in the Mt. of Baekwooun, Mt. of Youngchui. Land winds is formed clockwise circulation in the north, clockwise reverse direction in the south with Gangyang-bay as the center. Compared with model and observation value, Temperature is tend to appeared some highly simulation value in the night, observation value in the daytime in two sites all, but it is veil accorded generally, the pattern of one period can know very the similarity. And also, wind speed and wind direction is some appeared the error of observation value and calculation results in crossing time of the land wind and sea land, it can see that reproducibility is generally good, is very appeared the change land wind in the nighttime, the change of sea wind in the daytime. And also, according to change of the utilization coefficient of soil before and after development with Gwangyang-Bay area as the center. Temperature after development was high $0.55\sim0.67^{\circ}C$ in the 14 hoots, also was tend to appear lowly $0.10\sim0.22^{\circ}C$ in the 02 hours, the change of u, v component is comparatively tend to reduced sea wind and land wind, it is affected ascending air current and frictional power of the earth surface according to inequality heating of the generation of earth surface.

Monitoring Mangrove Plantation along the Coastal Belts of Bangladesh (1989-2010)

  • Rahman, M. Mahmudur;Pramanik, Md. Abu Taleb
    • Journal of Forest and Environmental Science
    • /
    • v.31 no.3
    • /
    • pp.225-234
    • /
    • 2015
  • Mangroves are important coastal ecosystems and are located at the inter-tidal zones of tropical and sub-tropical belts. The global mangrove forests are declining dramatically because of the conversion of forests to shrimp farming, over-exploitation, pollution and freshwater diversion. The Bangladesh Forest Department initiated mangrove afforestation throughout the coastal belts of Bangladesh in 1966 to provide better protection for the coastal communities. Up to 1990, 120,000 ha of mangroves had been planted and it is one of the largest coastal afforestaton programs in the world. The objective of this study is to exploit the spatial extent of mangrove plantation and their dynamics of changes over the last two decades using multispectral Landsat imagery. The study area covers the coastal areas of Bangladesh that is extended over the eastern part of Sundarbans up to Teknaf, the southern tip of mainland Bangladesh. Mangrove plantations were interpreted visually on computer screen and interactive delineation of forest boundary was done. The mangrove plantation area has been estimated as 32,725, 47,636 and 43,166 ha for the year of 1989, 2000 and 2010, respectively. Mangrove deforestation by human activity has increased almost six times in the recent decade in comparison to the previous one. The mangrove forest loss due to coastal erosion has slightly declined in the 2000s. Mangroves have been lost primarily because of agricultural expansion. The result of this investigation will be helpful to understand the dynamics of mangrove plantation and the main drivers of changes in this coastal ecosystem.

Holocene Sea Level Change and Geomorphic Process of the Uihang Coast in Taean (태안 의항 해안의 홀로세 해수면 변화와 지형 형성과정)

  • Lee, Gwang-Ryul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.4
    • /
    • pp.31-39
    • /
    • 2021
  • Gaemok, the place name of Uihang-ri, Sowon-myeon, Taean-gun, Chungnam, indicates a tombolo. This study estimated the Holocene sea level change and development process of the coastal landforms of the Gaemok and Hwanyeong Tombolos in the Uihang coast. The tombolos seemed to form at approximately 3.4 ka and the average sea level at that time was estimated to be higher than that of the present by ca. 1 m. The Gaemok area was a separated island from the Taean peninsula during the Holocene Climatic Optimum. At approximately 3.4 ka when the sea level rose again after the fall, the Gaemok area was tied to the land by formation of the Gaemok and Hwanyeong Tombolos. The falling or fluctuating sea levels after 3.4 ka have shaped the present coastal landforms.

Characteristics of Surface High Ozone Concentration on Pusan Coastal area, Korea (부산 해안지역의 고농도 오존 발생 특성에 관한 연구)

  • 전병일
    • Journal of Environmental Science International
    • /
    • v.9 no.4
    • /
    • pp.295-302
    • /
    • 2000
  • This study was conducted to investigate the characteristics of surface ozone concentration and occurrence of high ozone concentration using hourly ozone, nitrogen dioxide and meteorological data for 1997~1998 in Pusan coastal area. Monthly mean ozone concentration was the highest at Dongsamdong in Spring(35.4ppb), at Kwangbokdong in Fall(25.1ppb) and the lowest Dongsamdong(22.2ppb) and Kwangbokdong(16.0ppb) in Winter. Relative standard deviation indicating clearness of observation site was 0.42 at Dongsamdong and 0.49 at Kwangbokdong that is similar to urban area. The diurnal variation of ozone concentration of Dongsamdong and Kwangbokdong showed maximum at 1500~1600LST and minimum 0700~0800LST that typical pattern of ozone concentration. In ozone episode period(Sept. 10~15, 1998), diurnal change of ozone concentration was very high, and ozone concentration was related to meteorological parameters such as temperature, relative humidity, wind speed, cloud amount and radiation on a horizontal surface. During the episode days peak ozone concentrations are much higher than the normal values, wind speeds are always lower, and solar radiation is high with the exception of the September episode.

  • PDF

Prediction of Environmental Change and Mitigation plan for large scale reclamation (대규모 매립에 대한 환경영향예측과 저감방안에 관한 연구)

  • Shin, Bum-Shick;Kim, Kyu-Han
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.2
    • /
    • pp.95-100
    • /
    • 2010
  • In this study we predicted some of the negative effects on the ocean ecosystem and water quality, caused by a coastal reclamation project in semi-closed bay that makes it extremely difficult to be purified by natural process. In order to predict change of water quality triggered by coastal reclamation, the 3D hydrodynamic model and material cycle model are used. And we suggested new ecological park, an artificial beach and eco-friendly revetments on the reclamation area to mitigate the environmental impacts affecting this area using the numerical simulation results and observation data.

A Study on the Eco-Environmental Change of Coastal Area by the Sea Level Rise (해수면 상승에 따른 해안지역 생태환경 변화)

  • Kim, Nam-Shin;Lee, Chang-Seok
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.3
    • /
    • pp.53-63
    • /
    • 2010
  • The global sea level rise has an effect on eco-environmental change by the inundation and erosion in the coastal area. Forecasting model on the change of morpho-ecological environments by the sea level change will give us information for coastal area management by predicting environmental changes of the up-coming future. This research aimed to foresee eco-environmental changes by the sea level rise in coastal area. Prediction model used SLAMM model developed to forecast coastal changes by IPCC scenario. The model predicted centennial environmental changes in the mouth of Han river and Nakdong river, Suncheon and Hampyeung bay as case areas. To sum up the research findings, in the estuary of the Han river, tidal flat was gradually disappeared from the year 2075, scrubmarsh and saltmarsh belts were developed. In the Nakdong River estuary, scrubmarsh was decreased from the year 2025, tidal flat was deposited from the year 2050, and also, the Gimhae plain was partially inundated, and wetlands were formed. In the Hampyeung bay, saltmarsh was deposited in the year 2025, tidal flat expanded until 2050 was partially submerged after that time. Tidal flat of Suncheon bay was disappeared by the inundation after 2025, and saltmarsh was developed in the embayment.

Efficiency Assessment of Analysing Coastal Geomorphic Landscape Change by Satellite Image Interpretation (위성영상을 이용한 해안습지 지형경관 변화 분석의 효율성 평가)

  • 박의준;구자용
    • Journal of the Korean Geographical Society
    • /
    • v.38 no.5
    • /
    • pp.822-834
    • /
    • 2003
  • It is difficult to analyse geomorphic landscape changes effectively by a field survey. A satellite image interpretation may play an important role to overcome such a problem. The purpose of this study is to assess the accuracy of different method to identify geomorphic landscape change by using satellite imagery. The study area is the Yongjong coastal wetland in which a huge man-made environmental change occured to build a new international airport in the past decade. These changes may be summarized that a coastal landscape has been changed to a terrestrial landscape, and also a natural landscape to a man-made landscape. In order to detect these changes, we applied three different satellite interpreting methods, including a binary change mask using band difference. a binary change mask using normalized band difference. and a binary change mask using NDVI. We concluded that a binary change mask using NDVI is the best method among three different methods analysing the coastal geomorphic-landscape changes.

The Research of Beach Deformation after Construction of the Jetties

  • Park, Sang-Kil;Han, Chong-Soo;Roh, Tae-Young;Park, O-Young;Ahn, Ik-Seong;Lee, Ji-Hun
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.4
    • /
    • pp.185-191
    • /
    • 2011
  • This research was described the prevention of coastal topographical change and sediment diffusive concentration incoming from small estuary after construction jetties. This structure is constructed to decrease sediment deposition incoming from the upstream river due to the urbanization and industrial development and to minimize effects on the coastal ecosystem. The physical modeling and numerical modeling for waves were conducted to analyze the configuration of Imrang sand beach deformation without and with construction of jetty. The specification of the installed jetty, which is able to control sedimentation concentration was decided based on the prediction of the Imrang beach area changes by space and time. As a result, the jetties constructed in the estuary retarded the rate of sand sediment, so that the effect area of sand sedimentation was obviously decreased. In addition, the measured field data indicated that the sediment deposition inside of dikes could be controlled and the right side area of jetties could be preserved without sediment deposition.