• Title/Summary/Keyword: change detection of buildings

Search Result 30, Processing Time 0.027 seconds

Designation of Buildings in Urban Area of High-resolution Satellite Image Using Generalized Hough Transform

  • Lee, Seung-Hee;Park, Sung-Mo;Lee, Joon-Whoan;Kim, Joon-Cheol
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.156-158
    • /
    • 2003
  • Analysis of high-resolution satellite image becomes important for cartography, surveillance, and remote sensing. However, there are lots of problems to be solved for automatic analysis of high-resolution satellite image especially in urban area. The problems are originated from the increased complexity due to the unnecessary details and shadows, and time-varying illuminations. Because of such obstacles, it seems impossible to make automatic analysis. This paper proposes a way of change detection of buildings in urban area by using digital vector map. The proposed way makes the buildings on the vector map parameterized, and searches them in the preprocessed high-resolution image by using generalized Hough transform. The searched building objects are overlaid on the satellite image. The overlaid image can help to detect the change of building rapidly.

  • PDF

Change Detection of Buildings Using High Resolution Remotely Sensed Data

  • Zeng, Yu;Zhang, Jixian;Wang, Guangliang
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.530-535
    • /
    • 2002
  • An approach for quickly updating GIS building data using high resolution remotely sensed data is proposed in this paper. High resolution remotely sensed data could be aerial photographs, satellite images and airborne laser scanning data. Data from different types of sensors are integrated in building extraction. Based on the extracted buildings and the outdated GIS database, the change-detection-template can be automatically created. Then, GIS building data can be fast updated by semiautomatically processing the change-detection-temp late. It is demonstrated that this approach is quick, effective and applicable.

  • PDF

Damage detection of shear buildings using frequency-change-ratio and model updating algorithm

  • Liang, Yabin;Feng, Qian;Li, Heng;Jiang, Jian
    • Smart Structures and Systems
    • /
    • v.23 no.2
    • /
    • pp.107-122
    • /
    • 2019
  • As one of the most important parameters in structural health monitoring, structural frequency has many advantages, such as convenient to be measured, high precision, and insensitive to noise. In addition, frequency-change-ratio based method had been validated to have the ability to identify the damage occurrence and location. However, building a precise enough finite elemental model (FEM) for the test structure is still a huge challenge for this frequency-change-ratio based damage detection technique. In order to overcome this disadvantage and extend the application for frequencies in structural health monitoring area, a novel method was developed in this paper by combining the cross-model cross-mode (CMCM) model updating algorithm with the frequency-change-ratio based method. At first, assuming the physical parameters, including the element mass and stiffness, of the test structure had been known with a certain value, then an initial to-be-updated model with these assumed parameters was constructed according to the typical mass and stiffness distribution characteristic of shear buildings. After that, this to-be-updated model was updated using CMCM algorithm by combining with the measured frequencies of the actual structure when no damage was introduced. Thus, this updated model was regarded as a representation of the FEM model of actual structure, because their modal information were almost the same. Finally, based on this updated model, the frequency-change-ratio based method can be further proceed to realize the damage detection and localization. In order to verify the effectiveness of the developed method, a four-level shear building was numerically simulated and two actual shear structures, including a three-level shear model and an eight-story frame, were experimentally test in laboratory, and all the test results demonstrate that the developed method can identify the structural damage occurrence and location effectively, even only very limited modal frequencies of the test structure were provided.

Building Change Detection Using Deep Learning for Remote Sensing Images

  • Wang, Chang;Han, Shijing;Zhang, Wen;Miao, Shufeng
    • Journal of Information Processing Systems
    • /
    • v.18 no.4
    • /
    • pp.587-598
    • /
    • 2022
  • To increase building change recognition accuracy, we present a deep learning-based building change detection using remote sensing images. In the proposed approach, by merging pixel-level and object-level information of multitemporal remote sensing images, we create the difference image (DI), and the frequency-domain significance technique is used to generate the DI saliency map. The fuzzy C-means clustering technique pre-classifies the coarse change detection map by defining the DI saliency map threshold. We then extract the neighborhood features of the unchanged pixels and the changed (buildings) from pixel-level and object-level feature images, which are then used as valid deep neural network (DNN) training samples. The trained DNNs are then utilized to identify changes in DI. The suggested strategy was evaluated and compared to current detection methods using two datasets. The results suggest that our proposed technique can detect more building change information and improve change detection accuracy.

Detection of Collapse Buildings Using UAV and Bitemporal Satellite Imagery (UAV와 다시기 위성영상을 이용한 붕괴건물 탐지)

  • Jung, Sejung;Lee, Kirim;Yun, Yerin;Lee, Won Hee;Han, Youkyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.3
    • /
    • pp.187-196
    • /
    • 2020
  • In this study, collapsed building detection using UAV (Unmanned Aerial Vehicle) and PlanetScope satellite images was carried out, suggesting the possibility of utilization of heterogeneous sensors in object detection located on the surface. To this end, the area where about 20 buildings collapsed due to forest fire damage was selected as study site. First of all, the feature information of objects such as ExG (Excess Green), GLCM (Gray-Level Co-Occurrence Matrix), and DSM (Digital Surface Model) were generated using high-resolution UAV images performed object-based segmentation to detect collapsed buildings. The features were then used to detect candidates for collapsed buildings. In this process, a result of the change detection using PlanetScope were used together to improve detection accuracy. More specifically, the changed pixels acquired by the bitemporal PlanetScope images were used as seed pixels to correct the misdetected and overdetected areas in the candidate group of collapsed buildings. The accuracy of the detection results of collapse buildings using only UAV image and the accuracy of collapse building detection result when UAV and PlanetScope images were used together were analyzed through the manually dizitized reference image. As a result, the results using only UAV image had 0.4867 F1-score, and the results using UAV and PlanetScope images together showed that the value improved to 0.8064 F1-score. Moreover, the Kappa coefficiant value was also dramatically improved from 0.3674 to 0.8225.

Damage detection of mono-coupled multistory buildings: Numerical and experimental investigations

  • Xu, Y.L.;Zhu, Hongping;Chen, J.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.6
    • /
    • pp.709-729
    • /
    • 2004
  • This paper presents numerical and experimental investigations on damage detection of mono-coupled multistory buildings using natural frequency as only diagnostic parameter. Frequency equation of a mono-coupled multistory building is first derived using the transfer matrix method. Closed-form sensitivity equation is established to relate the relative change in the stiffness of each story to the relative changes in the natural frequencies of the building. Damage detection is then performed using the sensitivity equation with its special features and minimizing the norm of an objective function with an inequality constraint. Numerical and experimental investigations are finally conducted on a mono-coupled 3-story building model as an application of the proposed algorithm, in which the influence of modeling error on the degree of accuracy of damage detection is discussed. A mono-coupled 10-story building is further used to examine the capability of the proposed algorithm against measurement noise and incomplete measured natural frequencies. The results obtained demonstrate that changes in story stiffness can be satisfactorily detected, located, and quantified if all sensitive natural frequencies to damaged stories are available. The proposed damage detection algorithm is not sensitive to measurement noise and modeling error.

Object-based Building Change Detection Using Azimuth and Elevation Angles of Sun and Platform in the Multi-sensor Images (태양과 플랫폼의 방위각 및 고도각을 이용한 이종 센서 영상에서의 객체기반 건물 변화탐지)

  • Jung, Sejung;Park, Jueon;Lee, Won Hee;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_2
    • /
    • pp.989-1006
    • /
    • 2020
  • Building change monitoring based on building detection is one of the most important fields in terms of monitoring artificial structures using high-resolution multi-temporal images such as CAS500-1 and 2, which are scheduled to be launched. However, not only the various shapes and sizes of buildings located on the surface of the Earth, but also the shadows or trees around them make it difficult to detect the buildings accurately. Also, a large number of misdetection are caused by relief displacement according to the azimuth and elevation angles of the platform. In this study, object-based building detection was performed using the azimuth angle of the Sun and the corresponding main direction of shadows to improve the results of building change detection. After that, the platform's azimuth and elevation angles were used to detect changed buildings. The object-based segmentation was performed on a high-resolution imagery, and then shadow objects were classified through the shadow intensity, and feature information such as rectangular fit, Gray-Level Co-occurrence Matrix (GLCM) homogeneity and area of each object were calculated for building candidate detection. Then, the final buildings were detected using the direction and distance relationship between the center of building candidate object and its shadow according to the azimuth angle of the Sun. A total of three methods were proposed for the building change detection between building objects detected in each image: simple overlay between objects, comparison of the object sizes according to the elevation angle of the platform, and consideration of direction between objects according to the azimuth angle of the platform. In this study, residential area was selected as study area using high-resolution imagery acquired from KOMPSAT-3 and Unmanned Aerial Vehicle (UAV). Experimental results have shown that F1-scores of building detection results detected using feature information were 0.488 and 0.696 respectively in KOMPSAT-3 image and UAV image, whereas F1-scores of building detection results considering shadows were 0.876 and 0.867, respectively, indicating that the accuracy of building detection method considering shadows is higher. Also among the three proposed building change detection methods, the F1-score of the consideration of direction between objects according to the azimuth angles was the highest at 0.891.

Automatic Seismic P-wave Detection Algorithm Using Variations of Impact Momentum (충격 추진력 변화를 이용한 지진 P파 자동 검출 알고리즘)

  • Choi, Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.7
    • /
    • pp.884-891
    • /
    • 2018
  • In this paper, we propose an automatic earthquake P-wave detection algorithm based on the variations of the impact momentum derived from the seismic acceleration signals. The amount of change in the impact momentum induced by the acceleration refers to the influence of buildings or facilities on the earthquake, The proposed algorithm can effectively detect the seismic P-wave by simultaneously considering the amplitude and the frequency change of the seismic wave when the earthquake occurs. Computer simulations using the observed seismic signals were performed to evaluate the validity of the induced impact momentum variation and the superiority of the proposed algorithm.

Building change detection in high spatial resolution images using deep learning and graph model (딥러닝과 그래프 모델을 활용한 고해상도 영상의 건물 변화탐지)

  • Park, Seula;Song, Ahram
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.3
    • /
    • pp.227-237
    • /
    • 2022
  • The most critical factors for detecting changes in very high-resolution satellite images are building positional inconsistencies and relief displacements caused by satellite side-view. To resolve the above problems, additional processing using a digital elevation model and deep learning approach have been proposed. Unfortunately, these approaches are not sufficiently effective in solving these problems. This study proposed a change detection method that considers both positional and topology information of buildings. Mask R-CNN (Region-based Convolutional Neural Network) was trained on a SpaceNet building detection v2 dataset, and the central points of each building were extracted as building nodes. Then, triangulated irregular network graphs were created on building nodes from temporal images. To extract the area, where there is a structural difference between two graphs, a change index reflecting the similarity of the graphs and differences in the location of building nodes was proposed. Finally, newly changed or deleted buildings were detected by comparing the two graphs. Three pairs of test sites were selected to evaluate the proposed method's effectiveness, and the results showed that changed buildings were detected in the case of side-view satellite images with building positional inconsistencies.

Object Classification and Change Detection in Point Clouds Using Deep Learning (포인트 클라우드에서 딥러닝을 이용한 객체 분류 및 변화 탐지)

  • Seo, Hong-Deok;Kim, Eui-Myoung
    • Journal of Cadastre & Land InformatiX
    • /
    • v.50 no.2
    • /
    • pp.37-51
    • /
    • 2020
  • With the development of machine learning and deep learning technologies, there has been increasing interest and attempt to apply these technologies to the detection of urban changes. However, the traditional methods of detecting changes and constructing spatial information are still often performed manually by humans, which is costly and time-consuming. Besides, a large number of people are needed to efficiently detect changes in buildings in urban areas. Therefore, in this study, a methodology that can detect changes by classifying road, building, and vegetation objects that are highly utilized in the geospatial information field was proposed by applying deep learning technology to point clouds. As a result of the experiment, roads, buildings, and vegetation were classified with an accuracy of 92% or more, and attributes information of the objects could be automatically constructed through this. In addition, if time-series data is constructed, it is thought that changes can be detected and attributes of existing digital maps can be inspected through the proposed methodology.