• Title/Summary/Keyword: change construction design

Search Result 902, Processing Time 0.025 seconds

The Characteristics of Flexibility applied to Unit Plan of Housing by Residents Participation - focusing on European Multi-story Housing applying Residents Participation - (거주자 참여형 공동주거의 평면계획에 적용된 가변성의 특성 - 유럽의 거주자 참여형 다층 공동주거를 중심으로 -)

  • Kim, Hyun-Ju
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.11
    • /
    • pp.113-123
    • /
    • 2018
  • First of all, the multi-story Housing applying resident's participation in europe was classified by the menu selection method, the two-step supply method and the cooperative method. And then I analyzed flexible unit plan of cases for deriving the planning methode and the characteristics of flexibility. First, I analyzed the area and form of the unit plan, structure and Installation, fixed and variable elements to derive the planning method. The area of units are distributed from a minimum of $35m^2$ to a maximum of $150m^2$, and many of the unit planes have a narrow front and a deep depth. The structure is a long-span wall-structure or a skeleton structure, and is designed without any columns and bearing walls in the interior space for flexibility in spatial composition. The vertical shafts are located in the center of the unit in a box-form or in the corner at the unit dividing wall for free placement of interior wall. Fixed elements are framework and facility systems. Most of the future residents in the two-steps supply method and the cooperative method were able to freely design the internal space within the zoning concept proposed by the architect and change the location of the facade element within module system proposed by the architect. Second, the characteristics of the flexibility applied to the unit plan were divided in integrated flexibility, functional flexibility, construction flexibility, and supply flexibility. The integrated flexibility enables residents to give the variable space combination based on the complex structure of the inner space for providing various living experiences. Regarding functional flexibility, the three-dimensional spatial structure with neutral space has multi-functionality according to the needs of residents and easily accepts mixing of hybrid programs such as work and residence. Constructive flexibility allows residents to create identity by freely planning interior space and changing the size or location of facade components in a determined system of architects. Finally, various types of size and space composition are proposed and realized in the whole building applying menu selection method, so that flexibility in the offer can accommodate and integrate various types of living.

Study on the Aerodynamic Characteristics of an Wing Depending on the Propeller Mounting Position (프로펠러 장착 위치에 따른 날개의 공력 특성 변화 연구)

  • Inseo, Choi;Cheolheui, Han
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.6
    • /
    • pp.54-63
    • /
    • 2022
  • Recently, electric propulsion aircraft with various propeller mounting positions have been under construction. The position of the propeller relative to the wing can significantly affect the aerodynamic performance of the aircraft. Placing the propeller in front of the wing produces a complex swirl flow behind or around the propeller. The up/downwash induced by the swirl flow can alter the wing's local effective angle of attack, causing a change in the aerodynamic load distribution across the wing's spanwise direction. This study investigated the influence of the distance between a propeller and a wing on the aerodynamic loads on the wing. The swirl flow generated by the propeller was modelled using an actuator disk theory, and the wing's aerodynamics were analysed with the VSPAERO tool. Results of the study were compared to wind tunnel test data and established that both axial and spanwise distance between the propeller and the wing positively affect the wing's lift-to-drag ratio. Specifically, it was observed that the lift-to-drag ratio increases when the propeller is positioned higher than the wing.

Effect of Pot Bearing Aging on the Seismic Response of a Three-span Continuous Girder Bridge (3경간 연속 거더교의 지진응답에 대한 포트받침 노후화의 영향)

  • Ju Hyeon Jo;Dong Ho Kim;Jun Won Kang;Hyejin Yoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.4
    • /
    • pp.251-258
    • /
    • 2024
  • This study investigated the effect of bearing aging on the seismic response of a three-span continuous concrete girder bridge with pot bearings installed. The pot bearings were modeled as elastic springs in the longitudinal, transverse, and vertical directions of the bridge to reflect the stiffness of fixed and movable supports. The effect of bearing aging on the seismic response of the bridge was examined by considering two factors: a decrease in the horizontal stiffness of the fixed bearings and an increase in the horizontal stiffness of the movable bearings. The finite element model of the three-span continuous girder bridge was validated by comparing its numerical natural frequencies with the designed natural frequencies. Using artificial ground motions that conform to the design response spectrum specified by the KDS bridge seismic design code, the seismic responses of the bridge's girders and bearings were calculated, considering the bearing stiffness variation due to aging. The results of a numerical analysis revealed that a decrease in the horizontal stiffness of the fixed bearings led to an increase in the absolute maximum relative displacement of the bearings during an earthquake. This increases the risk of the mortar block that supports the bearing cracking and the anchor bolt breaking. However, an increase in the horizontal stiffness of the movable bearings due to aging decreased the absolute maximum shear on the fixed bearings. Despite the shear reduction in the fixed bearings, the aging of the pot bearings change could cause additional tensile bending stress in the girder section above the free bearings, which could lead to unexpected structural damage to the continuous bridge during an earthquake.

A Comparative Study on Hydraulic Jump and Specific Energy Losses at Downstream According to the Weir Discharge Types (보 유출형태에 따른 하류부 도수 및 비에너지 손실에 관한 비교 연구)

  • Park, Hyo-Seon;Yoon, Geun-Ho;Koo, Bon-Jin;Choi, Gye-Woon
    • Journal of Wetlands Research
    • /
    • v.15 no.1
    • /
    • pp.149-157
    • /
    • 2013
  • The weirs built so far are mainly overflow type weirs overflowing to the upstream. Main advantages of overflow type weirs are, effective water resources management and easy design, construction and maintenance due to many accumulated studies. However, due to the special feature of the overflow type weir where water overflows through the upstream of the weir, the silt coming from the upstream is not discharged to the downstream of the weir. This increases the river bed and reduces the reservoir capacity, and as a result, the weir loses its function. A underflow type weir with a water gate has been implemented in order to solve such sediment deposit and weir maintenance problems. However due to the design problem of recently constructed underflow type weirs, the river bed of the downstream of a weir has been scoured. And this leds to a structural problem. In this study, the flow characteristics of overflow type weirs and underflow type weir, hydraulic jump length analysis depending on change of water depth and the amount of specific energy loss generated per unit length depending on a weir type have been compared and analyzed, for the effective design and management of the weirs. The experiment results show that, when identical upstream conditions of underflow type weir and an overflow type weir were maintained, the hydraulic jump length was up to twice longer with Fr(Froude number) 3.5 of the hydraulic jump length at the underflow type weir, and the hydraulic jump length gradually decreased as the downstream water depth increased. The comparative analysis result of the amount of specific energy loss generated per unit length showed that the amount of energy loss per unit length was twice higher for an overlfow type weir than a underflow type weir. Therefore, in case of a underflow type facility, an additional energy reduction facility is determined to be necessary for safety of water construction structures.

Recent Progress in Air Conditioning and Refrigeration Research - A Review of papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 1998 and 1999 - (공기조화, 냉동 분야의 최근 연구 동향 - 1998년 1999년 학회지 논문에 대한 종합적 고찰 -)

  • 이재헌;김광우;김병주;이재효;김우승;조형희;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.12
    • /
    • pp.1098-1125
    • /
    • 2000
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering in 1998 and 1999 has been done. Focus has been put on current status of research in the aspect of heating, cooling, ventilation, sanitation and building environment. The conclusions are as follows. 1) A review of the recent studies on fluid flow, turbomachinery and pipe-network shows that many experimental investigations are conducted in applications of impingement jets. Researches on turbulent flows, pipe flows, pipe-networks are focused on analyses of practical systems and prediction of system performance. The results of noise reduction in the turbomachinery are also reported. 2) A review of the recent studies on heat transfer analysis and heat exchanger shows that there were many papers on the channel flow with the application to the design of heat exchanger in the heat transfer analysis. Various experimental and numerical papers on heat exchanger were also published, however, there were few papers available for the analysis of whole system including heat exchanger. 3) A review of the recent studies on heat pump system have focused on the multi-type system and the heat pump cycle to utilize treated sewage as the heat source. The defrosting and the frosting behaviors in the fin-tube heat exchanger is experimentally examined by several authors. Several papers on the ice storage cooling system are presented to show the dynamic simulation program and optimal operation conditions. The study on the micro heat pipes for the cooling of high power electronic components is carried out to examine the characteristics of heat and mass transfer processed. In addition to these, new type of separate thermosyphon is studied experimentally. 4) The recent studies on refrigeration/air conditioning system have focused on the system performance and efficiency for new alternative refrigerants. New systems operating with natural refrigerants are drawing lots of attention. In addition to these, evaporation and condensation heat transfer characteristics of traditional and new refrigerants are investigated for plain tubes and also for microfin tubes. Capillary tubes and orifice are main topics of research as expansion devices and studies on thermophysical properties of new refrigerants and refrigerant/oil mixtures are widely carried out. 5) A review of the recent studies on absorption cooling system shows that numerous experimental and analytical studies on the improvement of absorber performance have been presented. Dynamic analysis of compressor have been performed to understand its vibration characteristics. However research works on tow-phase flow and heat transfer, which could be encountered in the refrigeration system and various phase-change heat exchanger, were seemed to be insufficient. 6) A review of recent studies on duct system shows that the methods for circuit analysis, and flow balancing have been presented. Researches on ventilation are focused on the measurement of ventilation efficiency, and variation of ventilation efficiency with ventilation methods by numerous experimental and numerical studies. Furthermore, many studies have been conducted in real building in order to estimate indoor thermal environments. Many research works to get some information for cooling tower design have been performed but are insufficient. 7) A review on the recent studies on architectural thermal environment and building mechanical systems design shows that thermal comfort analysis is sitting environment, thermal performance analysis of Korean traditional building structures., and evaluation of building environmental load have been performed. However research works to improve the performance of mechanical system design and construction technology were seemed to be insufficient.

  • PDF

A Study on the Characteristics of Design and Acculturation of Planting of 'Guǐ(槐)' in Chirinjeong Wonlim of Pohang (포항 칠인정원림(七印亭園林)의 조영특성과 '괴목(槐木)' 식재(植栽)의 문화변용(文化變容))

  • Rho, Jae-Hyun;Han, Sang-Yup;Kim, Jeong-Moon;Jeong, Poo-Reum
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.35 no.3
    • /
    • pp.22-31
    • /
    • 2017
  • The purpose of this study is to illuminate historical sensitivity and design in the days of the Joseon era and examines the phenomenon of acculturation as revealed in the planting of Sophora japonica and Zelkova serrata in the garden grove by looking into the purpose underlying the construction, formative intention and the process of change in Pohang's Chirinjeong wonlim. Chirinjeong, also called Sanggaejeong(雙槐亭) after the fact that two Zelkova serrata trees were planted there, is a hermit pavilion in Sa-il village, Chogok-ri, built in the 9th year of King Taejong(1409) by Jang, Pyo(張彪, 1349~?) of an officer of bureaucratic origin toward the end of the Goryeo Dynasty, the Chirinjeong garden grove is an element essential to Chogok, the 3rd Gok of Sanggaegoogok(雙溪九曲). The wonlim of Chirinjeong is divided into the pavilion section composed of the entrance area, Chirinjeong, composed of Zelkova serrata and Sophora japonica, and the pond section composed of a quadrangular pond and island(方池方島), and Lagerstroemia indica. In view of the intent of the name Chirinjeong or of the fact that the pavilion was named based on that the royal seal string was hung on the Sanggwaesoo(雙槐樹) or two Zelkova serrata trees, it is reasonable to view it as Zelkova serrata trees having been planted early in the days of the Joseon Dynasty and those additionally planted later on that symbolizes the position of the three nobles and the Sophora japonica. In addition, in spite of the fact that the type of trees supplementarily planted in the 21st year of King Yeongjo(1745) is known as Sophora japonica, it is impossible to rule out the possibility of the tree planted outside of Chirinjeong being Zelkova serrata. In short, the three Zelkova serrata trees planted along with Sophora japonica must certainly be evidence that Zelkova serrata planted along with Sophora japonica in Chirinjeong wonlim indicates that the off spring of the Indong Jang family could tell the difference between Sophora japonica and Zelkova serrata. In the recognition process of Zelkova serrata trees finding their way into Korea, it was known as Zelkova serrata on the one hand and as Sophora japonica on the other, and the former, which enjoys a comparative advantage over in terms of the easiness with which to purchase, growth speed and possibility of growing into a long-lived tree was interchanged with Zelkova serrata, a case of acculturation as manifested in the planting of Sophora japonica in the Chirinjeong garden grove.

Evaluation of Construction Operation and Design Properties of CLSM for Corrugated Pipe in Underground (파형강관을 이용한 지하매설물용 뒤채움재 설계 및 시공성 평가)

  • Lee Kwan-Ho;Park Jae-Heon
    • International Journal of Highway Engineering
    • /
    • v.8 no.2 s.28
    • /
    • pp.63-74
    • /
    • 2006
  • During the construction of circular underground pipe, the non-proper compaction along the pipe and the decrease of compaction efficiency have been the main problems to induce the failure of underground pipe or facility. The use of CLSM (controlled low strength materials) should be one of the possible applications to overcome those problems. In this research, the full-scaled field test and the numeric analysis using PENTAGON-3D FEM program were carried out for three different cases on the change of backfill materials, including the common sand, the soil from construction site, and the CLSM. From the full-scaled test in field, the use of in-situ CLSM as backfill materials reduced the vertical and lateral deformation of the pipe, as well as the deformation of the ground surface. The main reason for reducing the deformation would be the characteristics of the CLSM, especially self-leveling and self-hardening properties. The measured earth pressure at the surround of the corrugated pipe using the CLSM backfills was the smaller than the other cases, and the absolute value was almost zero. Judging from the full-scaled field test and FEM analysis, the use of CLSM as backfill materials should be one of the best choices reducing the failure of the underground pipes.

  • PDF

Shear Strength and Erosion Resistance Characteristics of Stabilized Green Soils (토양안정재를 혼합한 녹생토의 전단강도 및 침식저항특성)

  • Oh, Sewook;Jeon, Jinchul;Kim, Donggeun;Lee, Heonho;Kwon, Youngcheul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.12
    • /
    • pp.45-52
    • /
    • 2015
  • With the rising interest in the environment, more attention on ecological restoration for damaged slope surface to restore its original state has been drawn. Generally, the most useful method is vegetation based spray work. This method uses green soil including sewage sludge, sawdust, paper sludge, and weathered granite soil. However, because there are neither accurate information nor test values about green soil, green soil is often lost by environmental factors such as rainfalls and strong winds. To solve the problem of green soil, it is necessary to prepare design standards about green soil, and conduct studies to deal with green soil loss in consideration of various variables including basic material property, soil quality of slope surface, and weather. This study was conducted in the mixture of green soil and eco-friendly soil stabilizer. With green soil, basic material property test and compaction test were conducted for the analysis on the basic characteristics of green soil. In the mixture with soil stabilizer at a certain ratio, we conducted shear strength test depending on the ratio in order to analyze the maximum shear strength, cohesion and the change in internal friction angles. Furthermore, in the mixture ratio of green soil and soil stabilizer, which is the same as the ratio in the shear strength test, an inclination of slope surface was made in laboratory for the analysis on erosion and germination rate. Finally, this study evaluated the most effective and economic mixing ratio of soil stabilizer to cope with neighboring environmental factors. According to the test, the shear strength of green soil increased up to 51% rely onto the mixing ratio of and a curing period, and its cohesion and internal friction angle also gradually increases. It is judged that the mixture of soil stabilizer was effective in improving shear strength and thereby increased the stability of green soil.

An Experimental Study on Flow Characteristics for Optimal Spacing Suggestion of 45° Upward Groynes (45° 상향수제의 적정 간격 제시를 위한 흐름특성 실험 연구)

  • Kim, Sung Joong;Kang, Joon Gu;Yeo, Hong Koo
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.5
    • /
    • pp.459-468
    • /
    • 2014
  • Groyne to control the direction and velocity of flow in rivers is generally installed for the purpose of protecting riverbanks or embankments from erosion caused by running water. In particular, as interest in river restoration and natural river improvement increases, groynes are proposed as a key hydraulic structure for local flow control and riparian habitat establishment. Groynes are installed mainly in groups rather than as individual structures. In case of groynes installed as a group, flow around the groynes change according to spacing in between the groynes. Therefore, groyne spacing is regarded as the most important factor in groyne design. This study aimed at examining changes of flows around and within the area of groynes that take place according to the spacing of groynes installed in order to propose the optimal spacing for upward groynes. To examine flow characteristics around groynes, this study looked at flows in main flow area and recirculation flow area separately. In main flow area, it examined the impact of flow velocity increasing as a result of conveyance reduction that is exerted on river bed stability in relation to changes in the maximum flow velocity according to installation spacing. As a factor causing impacts on scouring and sedimentation within the area of groynes, recirculation flow in the groyne area can lead problems concerning flow within the area and stability of embankment. As for recirculation area, an analysis was conducted on the scale of rotational flow and the flow around embankment that exerts impacts on stability of the embankment. In addition, a comparative analysis was carried with reference to changes of the central point of rotational flow that occur within the area of groynes. As a result of compositely examining the results, the appropriate installation spacing is proposed as min. four times-max. six times considering a decrease in flow velocity according to the installation of upward groynes, river bed stability and stability of embankments against counterflow within the area of groynes.

Rheology Control of Cement Paste for Applying ECC Produced with Slag Particles to Self-Consolidating and Shotcreting Process (고로슬래그 미분말이 혼입된 자기충전 및 숏크리트용 ECC의 개발을 위한 시멘트풀 레올로지 제어)

  • Park, Seung-Bum;Kim, Jeong-Su;Kim, Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.1
    • /
    • pp.67-75
    • /
    • 2008
  • An engineered cementitious composite produced with slag particles (Slag-ECC) had been developed based on micromechanical principle. Base grain ingredients were properly selected, and then the mixture proportion was optimized to be capable of achieving robust tensile ductility in the hardened state. The rheological design is performed in the present study by optimizing the amount of admixtures suitable for self-consolidating casting and shotcreting process in the fresh state. A special focus is placed on the rheological control which is directly applicable to the construction in field, using prepackaged product with all pulverized ingredients. To control the rheological properties of the composite, which possesses different fluid properties to facilitate two types of processing (i.e., self-consolidating and shotcreting processing), the viscosity change of the cement paste suspensions over time was initially investigated, and then the proper dosage of the admixtures in the cement paste was selected. The two types of mixture proportion were then optimized by self-consolidating & shotcreting tests. A series of self-consolidating and shotcreting tests demonstrated excellent self-consolidation property and sprayability of the Slag-ECC. The rheological properties altered through this approach were revealed to be effective in obtaining Slag-ECC hardened properties, represented by pseudo strain-hardening behavior in uniaxial tension, allowing the readily achievement of the desired function of the fresh Slag-ECC. These ductile composites with self-consolidating and shotcreting processing can be broadly utilized for a variety of applications, e.g., in strengthening seismic resistant structures with congested reinforcements, or in repairing deteriorated infrastructures by shotcreting process.