• Title/Summary/Keyword: chamber test

Search Result 1,532, Processing Time 0.032 seconds

A COMPARATIVE STUDY ON THE DISLODGING FORCE OF MAGNETIC ATTACHMENT TO THE DENTURE RESIN BY MAGNETIC DESIGN AND FIXING MATERIALS

  • Lee, Jung-Hwa;Lee, Jong-Hyuk;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.3
    • /
    • pp.261-268
    • /
    • 2008
  • STATEMENT OF PROBLEM: Detachment of the magnetic assembly from the denture base has been a problem in magnetic overdenture patients. PURPOSE: The objectives of this study were to compare the dislodging force by the fixing materials and the designs of the magnetic assembly, and to compare the effect between the fixing materials and the designs of the magnetic assembly. MATERIAL AND METHODS: Two fixing materials, Jet denture repair $acrylic^{(R)}$ and Super-$Bond^{(R)}$ C&$B^{(R)}$ and two types of magnetic assembly designed with or without wing were used. Each magnetic assembly was fixed in the chamber of the denture base resin block ($Lucitone^{(R)}$199) with each fixing material respectively. These specimens were thermocycled 2,000 cycles in the water held at $4^{\circ}C$ and $60^{\circ}C$ with a dwell time of 1 min each time. Each specimen was seated in a testing jig and then a push-out test was performed with a universal testing machine at a cross head speed of 0.5 mm/min to measure the maximum dislodging forces. RESULTS: Comparing the fixing materials, Super-Bond C&$B^{(R)}$ showed superior dislodging force than Jet denture repair $acrylic^{(R)}$. Comparing the design of the magnetic assemblies, the wing design magnetic assembly showed better dislodging force. Combination of the Super-Bond C&$B^{(R)}$ as a fixing material and wing design magnetic assembly revealed a greatest dislodging force. The kind of fixing material was more influential than the type of magnetic assembly. CONCLUSION: The dislodging force of Super-Bond C&$B^{(R)}$ was significantly higher than Jet denture repair $acrylic^{(R)}$. And the dislodging force of magnetic assembly which have wing design was significantly higher than magnetic assembly which have no wing design.

Development of an Sampling Tube for Organic Solvents and Study on the Adsorption Capacity of the Activated Charcoal (유기용제용 시료채취기 개발을 위한 활성탄 성능검정에 관한 연구)

  • Bai, Ya Soung;Park, Doo Young;Lim, Dai Soung;Park, Byung Moo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.15 no.1
    • /
    • pp.8-18
    • /
    • 2005
  • Adsorption capacity for the charcoal were tasted in this study to verify the performance of them for the use of the sampling media in industrial hygiene field. Two set of experiments were conducted. The first experiment was to test performance of the tested charcoal tube that were assembled in the laboratory with the use of the GR grade charcoal. The other tests were investigate the adsorption capacity of the charcoal tested in this study and charcoals embedded in the commercial charcoal tubes. Known air concentration samples for benzene, toluene, and o-xylene were prepared by the dynamic chamber. 1. At low air concentration levels (0.1${\times}$TLV), there was no significant differences between the tested charcoal tubes and the SKC charcoal tubes. This implies that there is no defect with the adsorption capacity of the charcoal. 2. At high concentration with 60 minutes sampling, the breakthrough were found only in the tested charcoal while no breakthrough were shown in the SKC charcoal. 3. From the breakthrough tests for the charcoal, the micropore volume(Wo) were calculated by the curve fitting with the use of Dubinin/Radushkevich(D/R) adsorption isotherm equation. The calculated values were 0.687cc/g for SKC, 0.504cc/g for Sensidyne, and 0.419cc/g for the tested charcoal(Aldrich). 4. Adsorption capacities were obtained from the isotherm curves shown adsorption capacities at several levels of the challenge concentration. All range of the air concentration concerned in industrial hygiene, the SKC charcoal showed approximately two times of adsorption capacity compared to the tested charcoal.

Experimental Study of Clays Mixed into Compaction Piles (다짐말뚝으로의 점토혼입현상에 관한 실험적 연구)

  • You, Seung-Kyong;Kim, Ju-Hyun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.4
    • /
    • pp.41-46
    • /
    • 2009
  • In this paper, a series of laboratory chamber tests were performed to evaluate the effects of clays mixed into compaction piles due to confining stress of ground on consolidation promoting. For the tests, various compaction piles such as SCP, GCP, and RAPP (Recycled-Aggregate Porous concrete Pile) were used. The ground condition was simulated at 50% and 100% of degree of consolidation. Also, confining stresses were applied to the composite ground corresponding to those of 5m depth. The amount of mixed clays into each compaction pile were estimated by measuring the drainage from the saturated compaction piles. From the test result, it was shown that the drainage area of compaction pile was changing according to the consolidation condition. GCP showed the most change of drainage area as it has relatively large void ratio; however, the amount of change was decreased by progressing consolidation of ground.

  • PDF

The effect of 4,4'-bis(N,N-diethylamino)benzophenone on the degree of conversion in liquid photopolymer for dental 3D printing

  • Lee, Du-Hyeong;Mai, Hang Nga;Yang, Jin-Chul;Kwon, Tae-Yub
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.5
    • /
    • pp.386-391
    • /
    • 2015
  • PURPOSE. The purpose of this preliminary study was to investigate the effects of adding 4,4'-bis(N,N-diethylamino) benzophenone (DEABP) as a co-initiator to a binary photoinitiating system (camphorquinone-amine) to analyze on the degree of conversion (DC) of a light-cured resin for dental 3D printing. MATERIALS AND METHODS. Cylindrical specimens (N=60, n=30 per group, ${\phi}5mm{\times}1mm$) were fabricated using bisphenol A glycerolate dimethacrylate (BisGMA) both with and without DEABP. The freshly mixed resins were exposed to light in a custom-made closed chamber with nine light-emitting diode lamps (wavelength: 405 nm; power: $840mW/cm^2$) for polymerization at each incidence of light-irradiation at 10, 30, 60, 180, and 300 seconds, while five specimens at a time were evaluated at each given irradiation point. Fourier-transform infrared (FTIR) spectroscopy was used to measure the DC values of the resins. Two-way analysis of variance and the Duncan post hoc test were used to analyze statistically significant differences between the groups and given times (${\alpha}$=.05). RESULTS. In the DEABP-containing resin, the DC values were significantly higher at all points in time (P<.001), and also the initial polymerization velocity was faster than in the DEABP-free resin. CONCLUSION. The addition of DEABP significantly enhanced the DC values and, thus, could potentially become an efficient photoinitiator when combined with a camphorquinone-amine system and may be utilized as a more advanced photopolymerization system for dental 3D printing.

Measuring the Tensile Properties of the Nanostructure Using a Force Sensor (힘센서를 이용한 나노구조체의 인장물성 측정)

  • Jeon, Sang-Gu;Jang, Hoon-Sik;Kwon, Oh-Heon;Nahm, Seung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.2
    • /
    • pp.211-217
    • /
    • 2010
  • It is important to measure the mechanical properties of nanostructures because they are required to determine the lifetime and reliability of nanodevices developed for various fields. In this study, tensile tests for a multi-walled carbon nanotube (MWCNT) and a ZnO nanorod were performed in a scanning electron microscope (SEM). The force sensor was a cantilever type and was mounted in front of a nanomanipulator placed in the chamber. The nanomanipulator was controlled using a joystick and personal computer. The nanostructures dispersed on the cut area of a transmission electron microscope (TEM) grid were gripped with the force sensor by exposing an electron beam in the SEM; the tensile tests were the performed. The in situ tensile loads of the nanostructure were obtained. After the tensile test, the cross-sectional areas of the nanostructures were observed by TEM and SEM. Based on the TEM and SEM results, the elastic modulus of the MWCNT and ZnO nanorod were calculated to be 0.98 TPa and 55.85 GPa, respectively.

The Effect of Base Projecting Walls on the Bearing Capacity and Settlement of Shallow Foundations on Soft Ground (저면돌출벽을 이용한 연약지반상 얕은기초의 지내력 증대 효과)

  • Lim, Jongseok;Park, Seunghoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1523-1528
    • /
    • 2013
  • It is necessary to develop the simple and efficient technique that ease entry of man and equipment and take the role of foundations of temporary or small structures on the soft ground. This study intends to verify the effects on the increase of bearing capacity of base projecting walls under shallow foundations and to investigate the variance of the bearing capacity of the foundations according to the interval and length of the walls. For this, model soft ground in the chamber equipped with loading apparatus is made and the loading tests on the model foundations with base projecting walls of various intervals and lengths using the apparatus are performed with measuring the loads and settlements. The results show that the base projecting walls under shallow foundations on soft ground are effective on the increase of bearing capacity and the more the number and length of the walls the larger the effects. And, when the ratio of interval to length of the walls is 1, i.e. the shape forming the base of the foundation and the walls is square, the bearing capacity is increased by 25% and the effect is optimum.

A Study on Design of a Catalytic Ignitor for Liquid Rocket Engine using Hydrogen Peroxide and Kerosene (과산화수소/케로신을 사용하는 액체로켓엔진의 촉매 점화기 설계에 관한 연구)

  • Chae, Byoung-Chan;Lee, Yang-Suk;Jun, Jun-Su;Ko, Young-Sung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.6
    • /
    • pp.56-62
    • /
    • 2011
  • An experimental study on design of a catalytic ignitor was performed to use an ignition source for a small bi-propellant liquid rocket engine which use hydrogen peroxide and kerosene as propellants. In the catalytic ignitor, hot gas of hydrogen peroxide which was decomposed by a catalyst induced autoignition of kerosene. Mass flow rate and O/F ratio for the ignitor were calculated by CEA code. A combustion chamber which had a quartz window and thermocouples was manufactured to determine whether the ignition is successful. Ignition performance was investigated according to exit area of fixed rings and mixture ratio. Results showed that reliable ignition performance was achieved at non-choking exit area of fixed ring and O/F ratio of 6~8.

Long-term monitoring of ground anchor tensile forces by FBG sensors embedded tendon

  • Sung, Hyun-Jong;Do, Tan Manh;Kim, Jae-Min;Kim, Young-Sang
    • Smart Structures and Systems
    • /
    • v.19 no.3
    • /
    • pp.269-277
    • /
    • 2017
  • Recently, there has been significant interest in structural health monitoring for civil engineering applications. In this research, a specially designed tendon, proposed by embedding FBG sensors into the center king cable of a 7-wire strand tendon, was applied for long-term health monitoring of tensile forces on a ground anchor. To make temperature independent sensors, the effective temperature compensation of FBG sensors must be considered. The temperature sensitivity coefficient ${\beta}^{\prime}$ of the FBG sensors embedded tendon was successfully determined to be $2.0{\times}10^{-5}^{\circ}C^{-1}$ through calibrated tests in both a model rock body and a laboratory heat chamber. Furthermore, the obtained result for ${\beta}^{\prime}$ was formally verified through the ground temperature measurement test, expectedly. As a result, the ground temperature measured by a thermometer showed good agreement compared to that measured by the proposed FBG sensor, which was calibrated considering to the temperature sensitivity coefficient ${\beta}^{\prime}$. Finally, four prototype ground anchors including two tension ground anchors and two compression ground anchors made by replacing a tendon with the proposed smart tendon were installed into an actual slope at the Yeosu site. Tensile forces, after temperature compensation was taken into account using the verified temperature sensitivity coefficient ${\beta}^{\prime}$ and ground temperature obtained from the Korean Meteorological Administration (KMA) have been monitored for over one year, and the results were very consistent to those measured from the load cell, interestingly.

Research on Thermal Comfort by Increasing Air Conditioner Temperature (에어컨 온도상승에 따른 온열쾌적성 변화에 관한 연구)

  • Kim, Hyung-Chul;Kum, Jong-Soo;KIM, Dong-Gyu;CHUNG, Yong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.18 no.2
    • /
    • pp.77-84
    • /
    • 2006
  • This research evaluates thermal comfort by comparing the case of maintain cooing temperature of room with the case of raising it at the point of time that human body begins to adapt. An experiment uses constant temperature & humidity chamber 2 places. Pretesting room make up summer season environment, the testing room control by air-conditioner. In condition that maintain temperature of $33^{\circ}C$. The subjects stay in the pretesting room during the 30 minute for the heat storage amount of the normal summertime. The subjects stay in the testing room under each case (case 1: maintaining $24^{\circ}C$, case 2: maintaining $26^{\circ}C$, case 3: up $1^{\circ}C$ after maintaining $24^{\circ}C$ during 30 minute, case 4: up $1^{\circ}C$ after maintaining $26^{\circ}C$ during 40 minute). 1. Result of comparison of case 1 and case 2 appears that thermal sensitive vote examine from slight cool to cool and thermal comfort examine slight comfort by temperature rise at human body adaptation point of time.2. Test of case 3 and case 4 appear similar value at thermal sensitive vote and thermal comfort.3. Through the case 2 and case 4, continuous thermal comfort maintain at $24^{\circ}C$, if raise $26^{\circ}C$, same thermal comfort maintain after a human body adaptation temperature rising effect bring energy saving.

Performance Test of Low Temperature Regeneration Polymeric Desiccant Rotor (고분자 제습로터의 저온재생 성능시험)

  • Lee, Jin-Kyo;Lee, Dae-Young;Oh, Myung-Do
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.629-632
    • /
    • 2009
  • The polymeric desiccant rotor is made from the super absorbent polymer by ion modification. The moisture sorption capacity of the super desiccant polymer(SDP) is 4 to 5 times larger than those of common desiccant meterials such as silica gel or zeolite. It is also known that SDP can be regenerated even at the relatively low temperature. To fabricate the desiccant rotor, firstly the SDP was laminated by coating the SDP on polyethylene sheet. Then corrugated and rolled up into a rotor. The diameter, the depth, the dimensions of the corrugated channel, etc. were pre-determined from numerical simulation on the heat and mass transfer in the desiccant rotor. The dehumidification performance was tested in a climate chamber. The relevant tests were carried out at the process air inlet temperature of $32^{\circ}C$, the regeneration air inlet temperature of $60^{\circ}C$ and the inlet dew-point temperature of both the process air and the regeneration air of $18.5^{\circ}C$, when the rotation period is long, the moisture sorption is not effective. In the desiccant rotor developed in this study, the optimum rotation period is found about 350s at the regeneration temperature of $60^{\circ}C$. It was found from further experiments that the optimum rotation tends to decreases as the regeneration temperature increases. Meanwhile, the outlet temperature of the process air deceases monotonically as the rotation period increases.

  • PDF