• 제목/요약/키워드: chamber geometry

검색결과 179건 처리시간 0.035초

MICROWAVE 가열 건조에 의한 내화 점토의 열에너지 분포 특성 연구 (A Study on the Characteristics of Heat Energy Distribution of Fire-Proof Clay with Microwave Heating Drying)

  • 이승준;김윤제
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.752-757
    • /
    • 2001
  • The characteristics of heat energy distribution on the fire-proof clay with microwave heating drying are numerically investigated using finite element method. The modelled regular hexahedron chamber$(50cm\times50cm\times50cm)$ filled with air consists of vertical heat source and sink walls, a fire-proof clay model, and adiabatic plates on the top and bottom walls. With different geometrical aspect ratios of the fire-proof clay model, the heat energy distribution is throughly investigated. The model gave a good prediction of the microwave heating characteristics of fire-proof clay. The optimal shape of the fire-proof clay for given chamber geometry and microwave power is analyzed.

  • PDF

디젤연소실에서 새로운 충돌분무 형성에 대한 수치적 고찰 (Numerical Analysis of the Formation of New Impinging Spray in the Combustion System)

  • 류성목;차건종;김덕줄;박권하
    • 대한기계학회논문집B
    • /
    • 제22권11호
    • /
    • pp.1625-1634
    • /
    • 1998
  • The objective of this study is to establish geometric guidelines for design of impaction parts prepared for removing undesirable effects of fuel deposition on a wall in small direct-injection diesel engines. In order to get the guidelines a new wall geometry is introduced and assessed, which has a flat top and a slant edge. The size of the flat top and the angle of the slant edge are varied and tested in same chamber condition, then their effects on spray dispersions and drop sizes are discussed. The results show that the case of 3.0mm flat top and $60^{\circ}$ edge angle gives the best spray characteristics for a small combustion chamber in the test conditions chosen in this paper.

3차원 유한요소법을 이용한 타원 단면 소음기의 투과 손실 계산 (Prediction of Transmission Loss of Elliptic Expansion Chamber with Mean Flow by 3-Dimensional Finite Element Method)

  • 윤성기;이응식
    • 소음진동
    • /
    • 제3권3호
    • /
    • pp.271-278
    • /
    • 1993
  • Acoustic characteristics of silencer system are affected by various geometric parameters such as cross sectional geometry, size of chamber, and location of inlet-outlet port. It is impossible to obtain exact solutions of the equations of acoustic wave propagation except few simple cases. So, we resort to numerical techniques to analyze performance of acoustic system. In this work, finite element formulation has been obtained to predict transmission loss of an arbitrary 3-dimensional muffler in the presence of mean flow of low mach number. The effect of the degree of the ellipticity of expansion chambers on the transmission loss has been studied using the resulting finite element equation.

  • PDF

노즐이 내부형상이 이중분무의 유속과 입경에 미치는 영향 (Effect of Internal Geometry of Nozzle on the Velocity and Droplet Size of Twin Spray)

  • 김영진;정지원;김덕줄
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1522-1527
    • /
    • 2004
  • The purpose of this study is to investigate the effect of swirler angle and swirl chamber aspect ration of nozzle on the characteristics of single and twin spray. The performances of nozzle has been investigated by measurements of spray angle, droplet size, velocity and Weber number at a water pressure 0.4MHz. Visualization of spray was conducted to obtain the spray angle and breakup process. The spray characteristics such as droplet size and velocity were measured by Phase Doppler Anemometry(PDA). It was found that the smaller swirler angle, the larger axial velocity became. It was also shown that the larger aspect ratio, the smaller droplet diameter became.

  • PDF

급 확대부를 갖는 실린더 챔버 내부의 둔각물체 주위 유동에 관한 대 와동 모사 (Large Eddy Simulation of turbulent flow around a bluff body inside a sudden expansion cylindrical chamber)

  • 최창용;고상철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권1호
    • /
    • pp.98-108
    • /
    • 2004
  • This study concerns a large eddy simulation (LES) of turbulent flow around a bluff body inside a sudden expansion cylindrical chamber, a configuration which resembles a premixed gas turbine combustor The simulation code is constructed by using the general coordinate system based on the physical contravariant velocity components. The Smagorinsky model is employed and the calculated Reynolds number is 5,000 based on the bulk velocity and the diameter of the inlet pipe. The combined grid technique and cylindrical grid are tested in the numerical simulation with complex geometry. The predicted turbulent statistics are evaluated by comparing with LDV measurement data. The numerical flow visualizations depict the behavior of turbulent mixing process behind the flame holder.

노즐-디류저 내에서의 저 Reynolds수 해독특성 해석 (Analysis of Low Reynolds Number Flow in Nozzle and Diffuser)

  • 송귀은;이준식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2672-2677
    • /
    • 2007
  • An investigation of low Reynolds number flow in nozzles and diffusers which are widely used in the valveless micropump is presented. Flow characteristics in the nozzle and diffuser are explained in view of viscous effect and flow oscillation induced by pumping membrane. These calculation results show that the rectification property of valveless micropump is due to a flow separation in the diffuser and the separation is largely originated from the flow oscillation. Under the assumptions of steady flow velocity profile and flow separation in the diffuser, simplified analytical models are provided to see the dependency of rectification on the micropump geometry. Geometric parameters of channel length, nozzle throat, chamber size, and converging/diverging angle are depicted through the analytical models in low Reynolds number flow, and the prediction and experimental results are compared. This theoretical study can be used to determine the optimum geometry of valveless micropump.

  • PDF

노즐 형상과 기판의 위치 변화가 초음속 유동에 미치는 영향에 관한 수치해석 연구 (Numerical study on the effects of nozzle geometry and substrate location in the supersonic flow)

  • 박정재;윤석구;김호영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.58.2-58.2
    • /
    • 2010
  • This paper deals with the simulation of solid particle coating technology via supersonic nozzle in vacuum environment to devote as an aerosol-deposition device. In order to improve efficiencies of nozzle and coating process, effects of shockwave, nozzle geometry, and substrate location were studied computationally under a fixed chamber pressure of 0.01316 bar which is nearly vacuous. Shockwave is the important factor affect to entire flow because shockwave in the jet flow dissipates the kinetic energy of the flow in the supersonic condition. Results show that various nozzle geometries have significant effect on the supersonic flow and we know that the supersonic nozzle should be optimized to minimize the loss of the flow. Another parameter, the distance between substrate and nozzle tip, shows little effect in this study.

  • PDF

연소실 압력 강하에 의한 고체 추진제의 동적 소화 (Dynamic Extinction of Solid Propellants by Depressurization of Combustion Chamber)

  • 정호걸;이창진
    • 한국항공우주학회지
    • /
    • 제30권2호
    • /
    • pp.91-97
    • /
    • 2002
  • 응축영역 에너지 방정식과 기체 영역에 관한 화염모델을 사용하여 연소실 압력 강하에 반응하는 고체 추진제의 동적 소화 특성을 살펴보았다. 화염모델에서는 기체가 반응영역을 통과하는데 걸리는 시간(잔존시간, r,)이 동적 소화 특성을 결정하는 중요한 인자임을 확인하였다. 본 논문에서는 r,을 확산과 화학반응 시간의 다양한 조합으로 가정하였으며 이를 이용하여 동적 소화 특성을 살펴보았다. 또한 연소실 부피의 유한함에 따른 압력변화와 이에 대한 연소의 동적 반응도 살펴보았다. 동적 소화는 화학반응 시간보다는 확산 시간에 의하여 커다란 영향을 받는 현상임을 확인하였다. 그리고 연소실 부피가 유한한 경우가 무한한 경우보다 복잡한 동적 소화 특성을 보여주었다.

지반진동절연을 위한 공압제진대의 전달률 설계기법 (An Efficient Transmissibility-design Technique for Pneumatic Vibration Isolator)

  • 이정훈;김광준
    • 한국소음진동공학회논문집
    • /
    • 제18권4호
    • /
    • pp.411-423
    • /
    • 2008
  • Pneumatic vibration isolator has a wide application for ground-vibration isolation of vibration-sensitive equipments. Recent advances In precision machine tools and instruments such as nano-technology or medical devices require a better isolation performance, which can be efficiently done by precise modeling- and design- of the isolation system. This paper will discuss an efficient transmissibility design method for pneumatic vibration isolator by employing the complex stiffness model of dual-chamber pneumatic spring developed in our previous research. Three design parameters of volume ratio between the two pneumatic chambers, the geometry of capillary tube connecting the two pneumatic chambers and finally the stiffness of diaphragm necessarily employed for prevention of air leakage were found to be important factors in transmissibility design. Based on design technique that maximizes damping of dual-chamber pneumatic spring, trade-off among the resonance frequency of transmissibility, peak transmissibility and transmissibility in high frequency range was found, which was not ever stated in previous researches. Furthermore this paper will discuss about negative role of diaphragm in transmissibility design. Then the design method proposed in this paper will be illustrated through experiment at measurements.

신차단방식 SF$_{6}$ 가스 차단기의 소전류 차단성능 연구 (Investigation of Small Current Interruption Performance for New Type of Interrupting Chamber in SF$_{6}$ Gas Circuit Breaker)

  • 송원표;권기영;이재성;송기동;김맹헌;고희석
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권11호
    • /
    • pp.519-526
    • /
    • 2005
  • This paper presents computer simulation results for developing new type of SF$_{6}$ Circuit Breaker in terms of cold gas flow after small current interruption. This cold gas flows down a nozzle into the chamber of a circuit breaker. There are many difficult problems in analyzing the gas flow due to complex geometry, moving boundary, shock wave and so on. When predicting the dielectric capability of a gas circuit breaker after interruption, the gas pressure and density distributions due to the cold gas must be considered in addition to the electrical field imposed across the gas. A self-coded computational fluid dynamics (CFD) program is used for the simulation of cold gas flow in order to evaluate the electrical field characteristic across open contacts and transient characteristics of insulations after small current interruption.