• Title/Summary/Keyword: chain finite

Search Result 142, Processing Time 0.019 seconds

Analysis of an M/G/1/K Queueing System with Queue-Length Dependent Service and Arrival Rates (시스템 내 고객 수에 따라 서비스율과 도착율을 조절하는 M/G/1/K 대기행렬의 분석)

  • Choi, Doo-Il;Lim, Dae-Eun
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.3
    • /
    • pp.27-35
    • /
    • 2015
  • We analyze an M/G/1/K queueing system with queue-length dependent service and arrival rates. There are a single server and a buffer with finite capacity K including a customer in service. The customers are served by a first-come-first-service basis. We put two thresholds $L_1$ and $L_2$($${\geq_-}L_1$$ ) on the buffer. If the queue length at the service initiation epoch is less than the threshold $L_1$, the service time of customers follows $S_1$ with a mean of ${\mu}_1$ and the arrival of customers follows a Poisson process with a rate of ${\lambda}_1$. When the queue length at the service initiation epoch is equal to or greater than $L_1$ and less than $L_2$, the service time is changed to $S_2$ with a mean of $${\mu}_2{\geq_-}{\mu}_1$$. The arrival rate is still ${\lambda}_1$. Finally, if the queue length at the service initiation epoch is greater than $L_2$, the arrival rate of customers are also changed to a value of $${\lambda}_2({\leq_-}{\lambda}_1)$$ and the mean of the service times is ${\mu}_2$. By using the embedded Markov chain method, we derive queue length distribution at departure epochs. We also obtain the queue length distribution at an arbitrary time by the supplementary variable method. Finally, performance measures such as loss probability and mean waiting time are presented.

Assessment of Carsington Dam Failure by Slope Stability and Dam Behavior Analyses (사면안정 해석과 댐 거동분석을 통한 Carsington Dam 파괴의 고찰)

  • 송정락;김성인
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.87-102
    • /
    • 1991
  • It has been reported that the failure of Carsington Dam in Eng1and occured due to the existence of a thin yellow clay layer which was not identified during the design work, and due to pre-existing shears of the clay layer. The slope stability analyses during the design work, which utilized traditional circular arc type failure method and neglected the existence of the clay layer, showed a safety factor of 1.4. However, the post-failure analyses which utilized translational failure mode considering the clay layer and the pre-existing shear deformation revealed the reduction of safety factor to unity. The post-failure analysis assumed 10。 inclination of the horizontal forces onto each slice based on the results of finite element analyses. In this paper, Bishop's simplified method, Janbu method, and Morgenstern-Price method were used for the comparison of both circular and translational failure analysis methods. The effects of the pre-existing shears and subsquent movement were also considered by varying the soil strength parameters and the pore pressure ratio according to the given soi1 parameters. The results showed factor of safefy 1.387 by Bishop's simplified method(STABL) which assumed circular arc failure surface and disregarding yellow clay layer and pre-failure material properties. Also the results showed factor of safety 1.093 by Janbu method(STABL) and 0.969 by Morgenstern-Price method(MALE) which assumed wedge failure surface and considerd yellow clay layer using post failure material properties. In addition, dam behavior was simulated by Cam-Clay model FEM program. The effects of pore pressure changes with loading and consolidation, and strength reduction near or at failure were also considered based on properly assumed stress-strain relationship and pore pressure characteristics. The results showed that the failure was initiated at the yellow clay layer and propagated through other zones by showing that stress and displacement were concentrated at the yel1ow clay layer.

  • PDF