• Title/Summary/Keyword: cerebral ischemia/reperfusion

Search Result 125, Processing Time 0.036 seconds

Effect of Superior Cervical Sympathetic Ganglion Block on Brain Injury Induced by Focal Cerebral Ischemia/Reperfusion in a Rat Model (상경부교감신경절블록이 백서의 국소 뇌허혈/재관류로 인한 뇌 손상에 미치는 영향)

  • Lee, Ae Ryoung;Yoon, Mi Ok;Kim, Hyun Hae;Choi, Jae Moon;Jeon, Hae Yuong;Shin, Jin Woo;Leem, Jeong Gill
    • The Korean Journal of Pain
    • /
    • v.20 no.2
    • /
    • pp.83-91
    • /
    • 2007
  • Background: Cerebral blood vessels are innervated by sympathetic nerves that originate in the superior cervical ganglia (SCG). This study was conducted to determine the effect of an SCG block on brain injury caused by focal cerebral ischemia/reperfusion in a rat model. Methods: Male Sprague-Dawley rats (270-320 g) were randomly assigned to one of three groups (lidocaine, ropivacaine, and control). After brain injury induced by middle cerebral artery (MCA) occlusion/reperfusion, the animals were administered an SCG bloc that consisted of $30{\mu}l$ of 2% lidocaine or 0.75% ropivacaine, with the exception of animals in the control group, which received no treatment. Twenty four hours after brain injury was induced, neurologic scores were assessed and brain samples were collected. The infarct and edema ratios were measured, and DNA fragmented cells were counted in the frontoparietal cortex and the caudoputamen. Results: No significant differences in neurologic scores or edema ratios were observed among the three groups. However, the infarct ratio was significantly lower in the ropivacaine group than in the control group (P < 0.05), and the number of necrotic cells in the caudoputamen of the ropivacaine group was significantly lower than in the control group (P < 0.01). Additionally, the number of necrotic and apoptotic cells in theropivacaine group were significantly lower than inthe control group in both the caudoputamen and the frontoparietal cortex (P < 0.05). Conclusions: Brain injury induced by focal cerebral ischemia/reperfusion was reduced by an SCG block using local anesthetics. This finding suggests that a cervical sympathetic block could be considered as another treatment option for the treatment of cerebral vascular diseases.

Methanol Extract of Cassia mimosoides var. nomame and Its Ethyl Acetate Fraction Attenuate Brain Damage by Inhibition of Apoptosis in a Rat Model of Ischemia-Reperfusion

  • Kim, Ki-Hong;Lee, Jong-Won
    • Preventive Nutrition and Food Science
    • /
    • v.15 no.4
    • /
    • pp.255-261
    • /
    • 2010
  • Ischemic stroke, a major cause of death and disability worldwide, is caused by occlusion of cerebral arteries that, coupled with or without reperfusion, results in prolonged ischemia (hypoxia and hypoglycemia) and, ultimately, brain damage. In this study, we examined whether methanol extract of the whole plant of Cassia mimosoides var. nomame Makino that grows naturally in Korea, as well as Japan and China, and some of its fractions obtained by partitioning with organic solvents could protect human hepatocellular carcinoma cells (HepG2) under hypoxic condition by inhibiting apoptosis. We also investigated if these extracts could attenuate brain damage in a rat model of 2 hr of ischemia, generated by middle cerebral artery occlusion, and 22 hr of reperfusion. The whole extract ($100{\mu}g$/mL) maintained the cell number at more than half of that initially plated, even after 24 hr of cell culture under hypoxic condition (3% $O_2$). In the absence of the whole extract, almost all of the cells were dead by this time point. This improvement of cell viability came from a delay of apoptosis, which was confirmed by observing the timing of the formation of a DNA ladder when assessed by gel electrophoresis. Of fractions soluble in hexane, ethyl acetate (EA), butanol and water, EA extracts were selected for the animal experiments, as they improved cell viability at the lowest concentration ($10{\mu}g$/mL). The whole extract (200 mg/kg) and EA extract (10 and 20 mg/kg) significantly reduced infarct size, a measure of brain damage, by 34.7, 33.8 and 45.2.0%, respectively, when assessed by 2,3,5-triphenyl tetrazolium chloride staining. The results suggest that intake of Cassia mimosoides var. nomame Makino might be beneficial for preventing ischemic stroke through inhibition of brain cell apoptosis.

Neuroprotective Effect of Resveratrol on Acute Brain Ischemia Reperfusion Injury by Measuring Annexin V, p53, Bcl-2 Levels in Rats

  • Kizmazoglu, Ceren;Aydin, Hasan Emre;Sevin, Ismail Ertan;Kalemci, Orhan;Yuceer, Nurullah;Atasoy, Metin Ant
    • Journal of Korean Neurosurgical Society
    • /
    • v.58 no.6
    • /
    • pp.508-512
    • /
    • 2015
  • Background : Cerebral ischemia is as a result of insufficient cerebral blood flow for cerebral metabolic functions. Resveratrol is a natural phytoalexin that can be extracted from grape's skin and had potent role in treating the cerebral ischemia. Apoptosis, a genetically programmed cellular event which occurs after ischemia and leads to biochemical and morphological changes in cells. There are some useful markers for apoptosis like Bcl-2, bax, and p53. The last reports, researchers verify the apoptosis with early markers like Annexin V. Methods : We preferred in this experimental study a model of global cerebral infarction which was induced by bilateral common carotid artery occlusion method. Rats were randomly divided into 4 groups : sham, ischemia-reperfusion (I/R), I/R plus 20 mg/kg resveratrol and I/R plus 40 mg/kg resveratrol. Statistical analysis was performed using Sigmastat 3.5 ve IBM SPSS Statistics 20. We considered a result significant when p<0.001. Results : After administration of resveratrol, Bcl-2 and Annexin levels were significantly increased (p<0.001). Depending on the dose of resveratrol, Bcl2 levels increased, p53 levels decreased but Annexin V did not effected. P53 levels were significantly increased in ishemia group, so apoptosis is higher compared to other groups. Conclusion : In the acute period, Annexin V levels misleading us because the apoptotic cell counts could not reach a certain level. Therefore we should support our results with bcl-2 and p53.

Protective Effect of Aurantii Immaturus Fructus on Hypoxia Reperfusion Induced by PC12 Cell Damage and Global Ischemia in Gerbil (PC12 손상 세포 및 전뇌허혈 유발 Gerbil에 대한 지실의 세포보호효과 연구)

  • 김완식;정승현;신길조;문일수;이원철
    • The Journal of Korean Medicine
    • /
    • v.24 no.1
    • /
    • pp.29-40
    • /
    • 2003
  • Object : This research was performed to investigate the protective effect of Aurantii Immaturus Fructus against ischemic damage using PC12 cells and global ischemia in gerbils. Methods : To observe the protective effect of Aurantii Immaturus Fructus on ischemia damage, viability and changes in activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase and production of malondialdehyde (MDA) were observed after treating PC12 cells with Aurantii Immaturus Fructus during ischemic insult. Gerbils were divided into three groups : a normal group, a 5-min two-vessel occlusion (2VO) group, and an Aurantii Immaturus Fructus administered after 2VO group. The CCAs were occluded by microclip for 5 minutes. Aurantii Immaturus Fructus was administered orally for 7 days after 2VO. The histological analysis was performed at 7 days after the surgery. For histological analysis, the brain tissue was stained with 1% cresyl violet solution. Results : The results showed that 1. Aurantii Immaturus Fructus had a protective effect against ischemia in the CAI area of the gerbil hippocampus 7 days after 5-minute occlusion, 2. In the hypoxia/reperfusion model using PC12 cells, the Aurantii Immaturus Fructus had a protective effect against ischemia in the dose of $0.2{\;}\mu\textrm{g}/ml,{\;}2{\;}\mu\textrm{g}/ml{\;}and{\;}20{\;}\mu\textrm{g}/ml$ 3. Aurantii Immaturus Fructus increased the activities of glutathione peroxidase and catalase, 4. The activity of superoxide dismutase (SOD) was increased by ischemic damage, which might represent self protection. This study suggests that Aurantii Immaturus Fructus has some neuroprotective effect against neuronal damage following cerebral ischemia in vivo with a widely used experimental model of cerebral ischemia in Mongolian gerbils, and it also has protective effects on a hypoxia/reperfusion cell culture model using PCq2 cells. Conclusions : Aurantii Immaturus Fructus has protective effects against ischemic brain damage at the early stage of ischemia.

  • PDF

Protective Effect of Angelicae Dahuri Radix on Hypoxia Reperfusion Induced by PC12 Cell Damage and Global Ischemia in Gerbil (PC12 손상 세포 및 전뇌허혈 유발 Gerbil에 대한 백지의 세포보호효과)

  • 이영효;정승현;신길조;문일수;이원철
    • The Journal of Korean Medicine
    • /
    • v.24 no.1
    • /
    • pp.110-121
    • /
    • 2003
  • Objective : This research was performed to investigate the protective effect of Angelicae Dahuri Radix against ischemic damage using PC12 cells and global ischemia in gerbils. Methods : To observe the protective effect of Angelicae Dahuri Radix on ischemia damage, viability and changes in activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase and production of malondialdehyde (MDA) were observed after treating PC12 cells with Angelicae Dahuri Radix during ischemic insult. Gerbils were divided into three groups : a normal group, a 5-min two-vessel occlusion (2VO) group, and an Angelicae Dahuri Radix administered after 2VO group. The CCAs were occluded by microclip for 5 minutes. Angelicae Dahuri Radix was administered orally for 7 days after 2VO. The histological analysis was performed at 7 days after surgery. For histological analysis, the brain tissue was stained with 1% cresyl violet solution. Results : 1. Angelicae Dahuri Radix has a protective effect against ischemia in the CA1 area of the gerbil hippocampus 7 days after 5-minute occlusion, 2. In the hypoxia/reperfusion model using PC12 cells, Angelicae Dahuri Radix has a protective effect against ischemia in the dose of $0.2\mu\textrm{g}/ml$, $2\mu\textrm{g}/ml$ and $20\mu\textrm{g}/ml$, 3. Angelicae Dahuri Radix increased the activities of glutathione peroxidase and catalase. 4. The activity of superoxide dismutase (SOD) was increased by ischemic damage, which might represent self protection. This study suggests that Angelicae Dahuri Radix has some neuroprotective effect against neuronal damage following cerebral ischemia in vivo with a widely used experimental model of cerebral ischemia in Mongolian gerbils, and it also has protective effects on a hypoxia/reperfusion cell culture model using PC12 cells. Conclusions : Angelicae Dahuri Radix has protective effects against ischemic brain damage at the early stage of ischemia.

  • PDF

The Effects of Sunghyangjunggi-san and Gwackhyangjunggi-san Extracts on Cerebral Ischemia Following the MCA Occlusion in Rat (흰쥐의 중대뇌동맥 결찰로 유발된 뇌허혈에서 성향정기산과 곽향정기산이 신경세포에 미치는 효과)

  • 김선영;이원철
    • The Journal of Korean Medicine
    • /
    • v.22 no.4
    • /
    • pp.142-150
    • /
    • 2001
  • Objectives : The purpose of this investigation is to evaluate and compare the effects of Sunghyangjunggi-san (SH) and Gwackhyangjunggi-san (GH) extracts on reperfusion following the MCA occlusion in rats. Methods : To evaluate the effect of Sunghyangjunggi-san (SH) and Gwackhyangjunggi-san (GH) extracts on reperfusion following the MCA occlusion, the volume of cerebral infarction and edema were measured and the change of the CA1 pyramidal neurons in the hippocampus were investigated by light microscopy. Results : 1. The infarction volume of the control group was 23.6%, that of the GH group was 23.7%, and that of the SH group was 18.5%. 2. The brain edema volume of the control group increased by 16% compared with that of the normal group, that of the GH group increased by 14%, and that of the SH group increased by 9%. 3. The number of surviving pyramidal neurons in the CAI area of the hippocampus was investigated under light microscopy. In the control group, few surviving pyramidal neurons excisted (mean 6.4) and similarly in the GH group (mean 8.5), but in the SH group, the number of surviving pyramidal neurons was significantly higher, to the mean 18.4. Conclusions : According to the above results, in regard to the damage of neurons following cerebral ischemia, the GH group has little effect of the protection of neurons compared to the control group, but the SH group has a remarkable effect.

  • PDF

Effects of Geopungjeseub-tang(Gufengchushi-tang) on the Changes of Cerebral Blood Flow in Rats (거풍제습탕이 뇌허혈이 유발된 백서의 뇌혈류 변화에 미치는 영향)

  • Hong, Seok;Jeon, Sang-Yun
    • The Journal of Internal Korean Medicine
    • /
    • v.26 no.3
    • /
    • pp.596-604
    • /
    • 2005
  • Objectives : Geopungjeseub-tang(Gufengchushi-tang) has been used in oriental medicine for many centuries as a therapeutic agent for hemiplegia caused by deficiency of qi(氣虛) and damp phlegm(濕痰). This study was performed to evaluate effects of Geopungjeseub-tang extract(GJT) on hemodynamics[regional cerebral blood flow(rCBF), pial arterial diameter(PAD), mean arterial blood pressure(MABP), heart rate(HR)] in normal rats and in rats with cerebral ischemia by middle cerebral artery(MCA) occlusion. Also, effects of adrenergic ${\beta}-receptor$, cyclooxygenase on response to GJT were evaluated. Methods : Laser-doppler flowmetry(LDF) measured changes of rCBF, MABP and HR. Video microscope and width analyzer measured changes in PAD. Results : rCBF and PAD increased after treatment with GJT(10mg/kg, i.v.) during the period of cerebral reperfusion, and pretreatment with indomethacin raised rCBF and PAD increased after treatment with GJT during the same period as above. Pretreatment with propranolol decreased rCBF, but increased after GJT treatment, but raised PAD increased after GJT treatment during this period of reperfusion. Conclusion : CR caused diverse responses were observed in rCBF and PAD after treatment with GJT. ACF action is mediated by adrenergic ${\beta}-receptor$ and cyclooxygenase. Result suggest that GJT has an anti-ischemic effect through the improvement of cerebral hemodynamics and has theraputic potential for cerebral apoplexy.

  • PDF

Effects of Folium Perillae on Cerebral Ischemia in Rats (소엽(蘇葉) 추출물이 백서(白鼠)의 뇌허혈에 미치는 효과)

  • Kim, Hyung-Woo;Kim, Bu-Yeo;Cho, Su-Jin;Jeong, Hyun-Woo;Cho, Su-In
    • The Journal of Internal Korean Medicine
    • /
    • v.28 no.3
    • /
    • pp.502-509
    • /
    • 2007
  • Objectives : Folium perillae (FP) can relieve superficial pathogenic factors to dissipate cold and promote the circulation of qi and regulate the function of the stomach and is often used for interior qi-stagnation. We hypothesized that FP could rescue cerebral ischemia in rats. Methods : The present study was carried out to investigate the effects of FP on cerebral ischemia in terms of regional cerebral blood flow (rCBF) and mean arterial blood pressure (MABP) in rats. Finally, lactate dehydrogenase (LDH) release was investigated, too. Results : In this study, treatment with FP elevated rCBF and MABP levels in dose-dependent manner. Pre-treatment with indomethacin, an inhibitor of cyclooxygenase, inhibited rCBF increase induced by FP effectively. However, FP did not affect stability during cerebral reperfusion. Finally, FP significantly inhibited LD H activity in vitro Conclusions : These results suggest that FP is useful to treat patient with diseases related to cerebral ischemia, because FP can increase rCBF and MABP.

  • PDF

Neuroprotective Effects of Medicinal Herbs in the Transient Focal Ischemia

  • Oh, Jin-Kyung;Jung, Ji-Wook;Ahn, Nam-Yoon;Oh, Hye-Rim;Ryu, Jong-Hoon
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.64-64
    • /
    • 2003
  • It is thought that highly reactive oxygen radicals generated at the ischemia-reperfusion in case of strokes play an important role in damaging the brain. We examined the neuroprotective effects from the several medicinal herbs in the transient ischemic rat model and compared their effects with the free radical scavenging activities. Transient ischemia was induced by intraluminal occusion of the right middle cerebral artety for 120 min and reperfusion was continued for 22 h in rats. The free radical scavenging properties of medicinal herbs were examined in vitro by determination of the interaction with the 1,l-diphenyl-2-picrylhydrazyl (DPPH) stable free radical. Aqueous extracts of 11 medicinal herbs (200 mg/kg) were orally administered, promptly prior to reperfusion and 2 h after reperfusion. Total infarction volume in the ipsilateral hemisphere of ischemia reperfusion rats was significantly lowered by the treatment of 7 medicinal herbs (Sophora flavescens, Lycopus lucidus, Sanguisorba officinalis, Caesalpinia sappan, Albizia julibrissin, Rubia akane, Psoralea corylifolia, Prunella vulgaris). However, all of these medicinal herbs did not show antioxidative activities. These results suggest that neuroprotective effects of several drugs are not always correlated with their antioxidative properties.

  • PDF

Protective Effect of Bupleuri Radix on Hypoxia Reperfusion Induced by PC12 Cell Damage and Global Ischemia in Gerbil (PC12 손상 세포 및 전뇌허혈 유발 Gerbil에 대한 시호 세포보호효과)

  • 최삼열;정승현;신길조;문일수;이원철
    • The Journal of Korean Medicine
    • /
    • v.23 no.4
    • /
    • pp.113-124
    • /
    • 2002
  • Objects: This research was conducted to investigate the protective effect of Bupleuri Radix against ischemic damage using PC12 cells and global ischemia in gerbils, Methods: To observe the protective effect of Bupleuri Radixon ischemic damage, viability and changes in activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase and production of malondialdehyde (MDA) were observed after treating PC12 cells with Bupleuri Radix during ischemic damage. Gerbils were divided into three groups: a normal group, a 5-minute two-vessel occlusion (2VO) group and a Bupleun Radix administered group after 2VO. The CCAs were occluded by microclip for 5 minutes, Bupleuri Radix was administered orally for 7 days after 2VO. Histological analysis was performed on the 7th day. For histological analysis, the brain tissue was stained with 1 % of cresyl violet solution. Results: 1. Bupleuri Radix has a protective effect against ischemia in the CA1 area of the gerbil's hippocampus 7 days after 5-minute occlusion. 2. In the hypoxia/reperfusion model using PC12 cells, the Bupleuri Radix has a protective effect against ischemia in the dose of 0.2{\;}\mu\textrm{g}/ml,2{\;}\mu\textrm{g}/ml{\;}and{\;} 20{\;}\mu\textrm{g}/ml$. 3. Bupleuri Radix increased the activities of glutathione peroxidase and catalase. 4. The increased activity of superoxidedismutase (SOD) by ischemic damage might have been induced as an act of self-protection. This study suggests that Bupleuri Radix has some neuroprotective effect against neuronal damage following cerebral ischemia in vivo with a widely used experimental model of cerebral ischemia in Mongolian gerbils. Bupleuri Radix also has protective effect on a hypoxia/reperfusion cell culture model using PC12 cells. Conclusions: Bupleuri Radix has protective effect against ischemic brain damage during the early stages of ischemia.

  • PDF