• 제목/요약/키워드: ceramic tool

검색결과 224건 처리시간 0.035초

세라믹 그린시트의 미세 비아홀 펀칭 공정 연구 (A study on micro punching process of ceramic green sheet)

  • 신승용;주병윤;임성한;오수익
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 추계학술대회논문집
    • /
    • pp.101-106
    • /
    • 2003
  • Recent electronic equipment becomes smaller, more functional, and more complex. According to these trends, LTCC(low temperature co-fired ceramic) has been emerged as a promising technology in packaging industry. It consists of multi-layer ceramic sheet, and the circuit has 3D structure. In this technology via hole formation plays an important role because it provides an electric path for the packaging interconnection network. Therefore via hole quality is very important for ensuring performance of LTCC product. Via holes are formed on the green sheet that consists of ceramic(before sintering) layer and PET(polyethylene Terephthalate) one. In this paper we found the correlation between hole quality and process condition such as ceramic thickness, and tool size. The shear behavior of double layer sheet by micro hole punching which is different from that of single layer one was also discussed.

  • PDF

STS 304의 선삭에서 공구수명 향상을 위한 공구형상 (Tool Geometry for Improving Tool-Life in Turning of STS 304)

  • 이재우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.581-584
    • /
    • 2003
  • The austenitic STS 304 stainless steel was turned to clarify the effects of tool geometry on the tool wear. The wear of TiN-TiCN-TiC-TiAlN coated tungsten carbide tool was the smallest, exhibiting larger wear in the order of Si-Al-O-N ceramic, TiN coated tungsten carbide, TiN-TiCN-TiN coated tungsten carbide, TiC-TiN cermet and M20 tungsten carbide tools at the same cutting conditions. The S-type tool of M20 with large approach angle showed the longest tool life of all tools used in this tests due to preventing the groove wear of the side cutting edge. The wear of the S-type tool with the rake angle of 15$^{\circ}$became smaller than with that of -5$^{\circ}$, but the tool with the nose radius of 0.8mm did not perform much better with increasing the rake angle.

  • PDF

STS 304 선삭시의 공구마멸 특성 (Tool-Wear Characteristics in Turning of STS 304)

  • 이재우
    • 한국정밀공학회지
    • /
    • 제20권10호
    • /
    • pp.56-64
    • /
    • 2003
  • The effect of tool geometry on the tool wear in turning the austenitic stainless steel, STS 304 was investigated. The wear of TiN-TiCN-TiC-TiAlN coated tungsten carbide tool was the smallest, showing larger wear in the order of Si-Al-O-N ceramic, TiN coated tungsten carbide, TiN- TiCN- TiN coated tungsten carbide, TiC-TiN cermet and M20 tungsten carbide tools at the same cutting conditions. The S-type tool of M20 with the larger side cutting edge angle showed the smallest tool wear in all tests due to preventing the groove wear of the side cutting edge. The wear of the S-type tool with the rake angle of $15^{\circ}$ became smaller than with that of $-5^{\circ}$, but the tool with the nose radius of 0.8mm did not perform much better with increasing the rake angle.

저순도 알루미나 세라믹 가소결재의 피삭성

  • 이재우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 춘계학술대회 논문집
    • /
    • pp.33-38
    • /
    • 1995
  • In this study, unsistered, pre-sintered and sintered low purity alumina ceramics were machined with various tools to clarify the machniability, the optimum tool materials and the optimum tool materials and the optimum cutting conditions. The maon conclusions obtained were as follows. (1) Machined withalloy steel tool, the machinabilty of te pre-sintered ceramics becomes better with the decrease of pre-sintering temperature, but that of unsintered ceramics(white body) was extremely poor. (2) In the case of carbide tool K01, the tool life in machining white body was the longest, and the machinabilty of pre-sintered ceramics becomes poorer with the increase of the pre-sintering temperature. (3) In the case of ceramic tool, the 10000-1100 .deg. C pre-sintered ceramics showed te best machinability within a certain cutting speed range. So far as dry machining, the above combination and conditions showed the highest productivity. (4) When the pre-sintered ceramics were wet machined withsintered diamond tool, the tool life becomes extremelylong, and higher cutting speed can be can be used than in the case offull-sintered ceramics. The productivity of wet cutting is much higher than that ofdry cutting.

  • PDF

다이아몬드 코어드릴의 중공비가 절삭력에 미치는 영향 (A Study of the Effectiveness of Hollow Ratio on Cutting Force of Diamond Core Drill)

  • 김광민;최성대;홍영배
    • 한국기계가공학회지
    • /
    • 제10권2호
    • /
    • pp.135-141
    • /
    • 2011
  • In this study, the variation of the cutting forces generated in the machining process were evaluated experimentally. A material of $Al_{2}O_{3}$ ceramic and a tool of the dynamometer were used for the measurements of the cutting forces. With the constant rates of the feed and the tool rotation, the cutting forces were measured along three axial directions(X, Y, Z axis) for the various values of the hollow ratio. It was found that the cutting force be increasing linearly along the direction of Z axis, but along X, Y axis be not varied. Also from the viewpoint of the precesses of the hole drilling, the cutting force was found to be increasing sharply at the beginning process, but from the eighth process be increasing smoothly. As conclusions, the cutting force generated by machining for the material of $Al_{2}O_{3}$ ceramic are influenced more significantly by the feed rate and the hollow ratio than by the tool rotational speed.

세라믹 접합부재에 대한 파괴역학인자 및 파면 해석 (Analysis of Fracture Mechanics Parameter and Fracture Surface in Bonded Ceramic Joints)

  • 김기성
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1997년도 춘계학술대회 논문집
    • /
    • pp.156-163
    • /
    • 1997
  • Recently, attempts have been made to be join ceramics to metals in order to make up for the brittleness of ceramics. The difference in the coefficients of linear expansion of the two materials joined at high temperature will cause residual stress, which has a strong influence on the strength of the bonded joints. In this paper, the residual stress distribution and stress intensity factors of the ceramic/metal bonded joints were analyzed by 2-dimensional elastic boundary element method. Fracture toughness tests of ceramic/metal bonded joints with an interface crack were carried out. So the advanced method of quantitative strength evaluation for ceramic/metal bonded joints is to be suggested. Fracture surface and crack propagation path were observed using scanning electron microscope.

  • PDF

절삭가공에서 세라믹 공구의 칩형상에 관한 연구 (Chip Formation of Ceramic Tools in Metal Cutting)

  • 노상래;안상욱
    • 한국세라믹학회지
    • /
    • 제31권11호
    • /
    • pp.1355-1361
    • /
    • 1994
  • With the availability of ceramics (Al2O3, Al2O3-TiC), it is possible to machine very hard steel at different cutting conditions. When hardened steel STD 11 is turned using ceramic tools, chip formation is observed conical-herical and arc chips with a cyclic saw toothed type. The main cause of saw toothed chip formation is observed conical-herical and arc chips with a cyclic saw toothed type. The main cause of saw toothed chip formation is found to be periodic gross shear fracture extending from the free surface of the chip toward the tool tip. In regard to chip control, ceramic Al2O3 is superior to the other cutting tools. The roughness of machined surface was getting worse with increasing of cutting speed and feed.

  • PDF

Simulation of Sintering for the Complex Ceramic Bodies by NASTRAN

  • Lee, Sang-Ki;Kim, Hyung-Jong;Lee, June-Gunn
    • The Korean Journal of Ceramics
    • /
    • 제5권3호
    • /
    • pp.235-238
    • /
    • 1999
  • In a ceramic green body, some degree of nonuniformity in density always presents. These differences in green density will appear as nonuniform shrinkage after sintering takes place. For the complex ceramic bodies with various curves and angles, therefore, it is quite difficult to foresee the final dimensions precisely after sintering. This simulation study shows that, considering the sintering process as a thermal shrinkage phenomenon, the use of NASTRAN enables to predict the precise shape of a sintered body. Based on this result, 'the reverse engineering technique' has been developed that can unfold the exact dimensions of a green body to have the desired shape after sintering. This approach will provide a simple and useful tool for ceramic engineers to fabricate complicate bodies with tight dimensional tolerances.

  • PDF