• Title/Summary/Keyword: ceramic resin

Search Result 411, Processing Time 0.025 seconds

EFFECTS OF SURFACE TREATMENT AND BONDING AGENTS ON SHEAR BOND STRENGTH OF THE COMPOSITE RESION TO IPS-EMPRESS CERAMIC (IPS-Empress 도재에 대한 콤포짓트 레진의 전단결합강도)

  • Yoon, Byeung-Sik;Im, Mi-Kyung;Lee, Yong-Keun
    • Restorative Dentistry and Endodontics
    • /
    • v.23 no.1
    • /
    • pp.413-423
    • /
    • 1998
  • Dental ceramics exhibit excellent esthetic property, compressive strength, chemical durability, biocompatibility and translucency. This study evaluated the shear bond strength of composite resin to the new heat-pressed ceramic material (IPS-Empress System) depending on the surface treatments and bonding agents. The surface treatments were etching with 4.0% hydrofluoric acid, application of silane, and the combination of the two methods. Composite resin was bonded to ceramic with four kinds of dentin bonding agents(All-Bond 2, Heliobond, Scotch bond Multi-purpose and Tenure bonding agents). The ceramic specimen bonded with composite resin was mounted in the testing jig, and the universal testing machine(Zwick 020, Germany) was used to measure the shear bond strength with the cross head speed of 0.5 mm/min. The results obtained were as follows 1. The mean shear bond strength of the specimens of which the ceramic surface was treated with the combination of hydrofluoric acid and silane before bonding composite resin was significantly higher than those of the other surface treatment groups(p<0.05). 2. In the case of All-Bond 2 and Scotchbond Multi-purpose bonding agent group, the surface treatment methods did not influenced significantly on the shear bond(p>0.05). 3. Of the four bonding agents tested, the shear bond strength of Heliobond was significantly lower than those of other bonding agents regardless of the surface treatment methods(p<0.05). 4. The highest shear bond strength($12.55{\pm}1.92$ MPa) was obtained with Scotchbond Multipurpose preceded by the ceramic surface treatment with the combination of 4% hydrofluoric acid and silane.

  • PDF

Bond strength of resin cement to $CO_2$ and Er:YAG laser-treated zirconia ceramic

  • Kasraei, Shahin;Rezaei-Soufi, Loghman;Heidari, Bijan;Vafaee, Fariborz
    • Restorative Dentistry and Endodontics
    • /
    • v.39 no.4
    • /
    • pp.296-302
    • /
    • 2014
  • Objectives: It is difficult to achieve adhesion between resin cement and zirconia ceramics using routine surface preparation methods. The aim of this study was to evaluate the effects of $CO_2$ and Er:YAG laser treatment on the bond strength of resin cement to zirconia ceramics. Materials and Methods: In this in-vitro study 45 zirconia disks (6 mm in diameter and 2 mm in thickness) were assigned to 3 groups (n = 15). In control group (CNT) no laser treatment was used. In groups COL and EYL, $CO_2$ and Er:YAG lasers were used for pretreatment of zirconia surface, respectively. Composite resin disks were cemented on zirconia disk using dual-curing resin cement. Shear bond strength tests were performed at a crosshead speed of 0.5 mm/min after 24 hr distilled water storage. Data were analyzed by one-way ANOVA and post hoc Tukey's HSD tests. Results: The means and standard deviations of shear bond strength values in the EYL, COL and CNT groups were $8.65{\pm}1.75$, $12.12{\pm}3.02$, and $5.97{\pm}1.14MPa$, respectively. Data showed that application of $CO_2$ and Er:YAG lasers resulted in a significant higher shear bond strength of resin cement to zirconia ceramics (p < 0.0001). The highest bond strength was recorded in the COL group (p < 0.0001). In the CNT group all the failures were adhesive. However, in the laser groups, 80% of the failures were of the adhesive type. Conclusions: Pretreatment of zirconia ceramic via $CO_2$ and Er:YAG laser improves the bond strength of resin cement to zirconia ceramic, with higher bond strength values in the $CO_2$ laser treated samples.

Microtensile bond strength of CAD/CAM-fabricated polymer-ceramics to different adhesive resin cements

  • Sadighpour, Leyla;Geramipanah, Farideh;Ghasri, Zahra;Neshatian, Mehrnoosh
    • Restorative Dentistry and Endodontics
    • /
    • v.43 no.4
    • /
    • pp.40.1-40.10
    • /
    • 2018
  • Objectives: This study evaluated the microtensile bond strength (${\mu}TBS$) of polymer-ceramic and indirect composite resin with 3 classes of resin cements. Materials and Methods: Two computer-aided design/computer-aided manufacturing (CAD/CAM)-fabricated polymer-ceramics (Enamic [ENA; Vita] and Lava Ultimate [LAV; 3M ESPE]) and a laboratory indirect composite resin (Gradia [GRA; GC Corp.]) were equally divided into 6 groups (n = 18) with 3 classes of resin cements: Variolink N (VAR; Vivadent), RelyX U200 (RXU; 3M ESPE), and Panavia F2 (PAN; Kuraray). The ${\mu}TBS$ values were compared between groups by 2-way analysis of variance and the post hoc Tamhane test (${\alpha}=0.05$). Results: Restorative materials and resin cements significantly influenced ${\mu}TBS$ (p < 0.05). In the GRA group, the highest ${\mu}TBS$ was found with RXU ($27.40{\pm}5.39N$) and the lowest with VAR ($13.54{\pm}6.04N$) (p < 0.05). Similar trends were observed in the ENA group. In the LAV group, the highest ${\mu}TBS$ was observed with VAR ($27.45{\pm}5.84N$) and the lowest with PAN ($10.67{\pm}4.37N$) (p < 0.05). PAN had comparable results to those of ENA and GRA, whereas the ${\mu}TBS$ values were significantly lower with LAV (p = 0.001). The highest bond strength of RXU was found with GRA ($27.40{\pm}5.39N$, p = 0.001). PAN showed the lowest ${\mu}TBS$ with LAV ($10.67{\pm}4.37N$; p < 0.001). Conclusions: When applied according to the manufacturers' recommendations, the ${\mu}TBS$ of polymer-ceramic CAD/CAM materials and indirect composites is influenced by the luting cements.

A STUDY ON THE FRACTURE STRENGTH OF ALL-CERAMIC CROWNS (수종 전부도재관의 파절강도에 관한 비교연구)

  • Paek, Seung-Jin;Yang, Jae-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.33 no.4
    • /
    • pp.611-633
    • /
    • 1995
  • The pupose of this study was to compare the fracture strength of five kinds of all-ceramic crowns(Vintage, Dicor Empress-staining, Empress-layering, In-Ceram) luted with glass ionomer cerment and composite resin cement and to evaluate the effect of cements on the fracture stregth of all ceramic crowns. Five groups of twelve uniform sized all-ceramic crown specimens were fabricated. Six specimens of each group were cemented with glass ionomer cement(Fuji G.I. Cement) and the remaining six specimens of each group were etched, silane-treated, and cemented with composite resin cement(Bistite resin cement). The crowns were stored in water$(37^{\circ}C)$ for 1 day prior to loading in an Instron, using a steel ball(diameter 4mm) at a crosshead speed of 0.5mm/min. The crowns were angled $30^{\circ}$, so the steel ball contacted with the crowns 2mm lingual from the mid-incisal edge. The results obtained were summarized as follows ; 1. With G.I. cement, mean fracture load(Kg) Were : Intage : $18.33{\pm}1.47$ ; Empress-staining : $23.92{\pm}6.67$ ; Dicor : $24.0{\pm}5.81$ ; Empress-layering : $26.92{\pm}2.80$ ; In-Ceram : $51.58{\pm}6.87$ ; ANOVA revealed a significant difference existed(p<0.05) between the group A(Vintage, Dicor, Empress-staining, Empress-layering) and group B(In-Ceram). 2. With Resin cement, mean fracture load(Kg) were : Intage : $22.75{\pm}4.97$ ; Dicor : $42.75{\pm}7.07$ ; Empress-staining : $44.08{\pm}7.99$ ; Empresslayering : $50.42{\pm}5.43$ ; In-Ceram : $52.58{\pm}6.51$ ; ANOVA revealed a significatnt difference existed(p<0.05) between the group A(Vintage) and B(Dicor, Empress-staining Empress-alyering, In-Ceram). 3. Resin cement significantly increased the fracture strength of the all-ceramic crowns for Dicor(156%), Empress-staining(185%), Empress-alyering(187%)(p<0.05); but did not increase the fracture strength of Vintage(128%) and In-Ceram(101%)(p>0.05). 4. Majority of the all-ceramic crowns show a wedge fracture extending through proximal surfaces to an apex, usually apical third(with G.I. cement) or middle third(with Resin cement) of the facial surface.

  • PDF

BOND STRENGTH OF RESIN CEMENTS TO ZIRCONIA CERAMIC (지르코니아 세라믹과 레진 시멘트의 결합강도)

  • Chang Mun-Suk;Kim Ji-Hye;Cho Suck-Kyu;Bok Won-Mi;Song Kwang-Yeob;Park Ju-Mi
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.4
    • /
    • pp.426-437
    • /
    • 2005
  • Statement of problem : Although zirconium oxide ceramics are more and more commonly used in restorative dentistry, for many clinical applications only limited data can be found in the literature. However it is quite clear that hydrofluoric acid etching is impossible with zirconia ceramics. Therefore, other bonding techniques are required in order to lute these materials adhesively. Purpose : The purpose or this study was to evaluate the effects of surface treatments on shear bond strengths between two resin cements and a zirconia ceramic. Materials and methods : Experimental industrially manufactured yttrium-oxide-partially-stabilized zirconia ceramic discs (Adens, Korea) were used for this study. The ceramic specimens divided into five experimental groups and a control group (as received). Five surface treatments were studied 1) sandblasting with 110$\mu$m $Al_2O_3$ at 3 bars pressure 13 seconds at a distance of 10 mm, 2) flame-treated with the Silano-Pen for 5 $s/cm^3$, 3) grinding with a diamond bur. 4) sandblasting + Silano-Pen treatment, 5) diamond bur preparation + Silano-Pen treatment. Acrylic plastic tube (5 mm in height and 3 mm in diameter) were filled with composite to fabricate composite cylinders The composite cylinders were bonded to the ceramic specimens with either Superbond C&B or Panavia F resin luting agents. All cemented specimens were tested under shear loading until fracture on universal testing machine at a crosshead speed 1mm/min; the maximum load at fracture was recorded. Sheat bond strength data were analyzed with oneway analysis of variance and Tukey HSD tests (P<.05). Treated ceramic surfaces and fracture surfaces after shear testing were examined morphologically using scanning electron microscope. Results: Ceramic surface treatment with Silano-Pen after sandblasting improved the bond strength of Superbond C&B resin cement. Supevbond C& B resin cement at Silano-Pen aiker sandblasting($27.4{\pm}3.8MPa$) showed statistically higher shear bond strength than the others. Conclusion: Within the limitation of this study, Superbond C& &B resin cement are suitable for cementation of zirconia ceramics and flame-treated with the Silano-Pen after sandblasting is required to enhance the bond strength.

EFFECTS OF RESIN CEMENTS, CERAMIC SURFACE TREATMENTS AND THERMOCYCLING ON SHEAR BOND STRENGTH OF IPS EMPRESS CERAMIC (레진시멘트, 표면처리 및 열순환에 따른 IPS Empress의 전단결합강도)

  • Han, Jeong-Min;You, Young-Dae;Lee, Yong-Keun;Im, Mi-Kyung;Lee, Su-Jong
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.3
    • /
    • pp.473-481
    • /
    • 1999
  • This study evaluated the shear bond properties of IPS Empress glass ceramic to enamel and dentin surfaces with three ceramic surface treatments, and three resin cements. The influence of thermocycling was also investigated. The purpose of this study was to investigate the influences of resin cements, ceramic surface treatments, and thermocycling on shear bond properties. Ninety freshly extracted, noncarious human molars were selected for this study. The surface treatments of ceramic were etching <5.0% hydrofluoric acid, application of silane coupling agents(Tokuso Ceramic Primer, Clearfil porcelain bond, Monobond-S), and the combination of the two methods. Empress cylinders were bonded to enamel and dentin surfaces with three kinds of resin cements(Bistite resin cement, Panavia 21, Variolink). The specimens were aged in $37^{\circ}C$ distilled water for 24 hours. Half of the specimens were then thermocycled 500times between $5^{\circ}C$ and $55^{\circ}C$ with a dwell time of 15 seconds. Each specimen was debonded in shear mode and measured shear bond properties by using the universal testing machine(Zwick 020, Germany). The data were analyzed by SPSS/PC+(one-way ANOVA, Scheffe' s test and t-test). The results were as follows : 1. Without thermocyling, there was significant difference of shear bond strength to enamel surface between Bistite Resin Cement and Panavia 21 in case of etched and silane-treatment(p<0.05). 2. Without thermocyling, the shear bond strength of a group treated with silane and etching was significantly higher than that of a group treated with silane or etching with the application of Panavia 21 and Variolink(p<0.05). 3. A group treated with etching with the application of Variolink only showed a decrease of shear bond strength after thermocycling(p<0.05).

  • PDF

Characterization of Microstructure on Porous Silicon Carbide Prepared by Polymer Replica Template Method (고분자 복제 템플릿 방법을 이용하여 제조된 다공성 탄화규소의 미세구조 특성)

  • Lee, Yoon Joo;Kim, Soo Ryong;Kim, Young Hee;Shin, Dong Geun;Won, Ji Yeon;Kwon, Woo Teck
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.6
    • /
    • pp.539-543
    • /
    • 2014
  • Foam type porous silicon carbide ceramics were fabricated by a polymer replica method using polyurethane foam, carbon black, phenol resin, and silicon powder as raw materials. The influence of the C/Si mole ratio of the ceramic slurry and heat treatment temperature on the porous silicon carbide microstructure was investigated. To characterize the microstructure of porous silicon carbide ceramics, BET, bulk density, X-ray Powder Diffraction (XRD), and Scanning Electron Microscope (SEM) analyses were employed. The results revealed that the surface area of the porous silicon carbide ceramics decreases with increased heat treatment temperature and carbon content at the $2^{nd}$ heat treatment stage. The addition of carbon to the ceramic slurry, which was composed of phenol resin and silicon powder, enhanced the direct carbonization reaction of silicon. This is ascribed to a consequent decrease of the wetting angles of carbon to silicon with increasing heat treatment temperature.

Esthetic Restoration Using Targis & Vectris System (TARGIS & VECTRIS SYSTEM을 이용한 심미적 수복)

  • Choi, H.S.;Hwang, J.W.;Shin, S.W.;Suh, K.W.
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.7 no.1
    • /
    • pp.18-26
    • /
    • 1998
  • The improvement of esthetic dentistry has been accelerated from the development of composite resin and dentin-enamel adhesive since 1980's. The indirect composite resin restorations have more accurate proximal contact point and occlusal form than direct restoration. And the side effect of resin shrinkage is minimal because the amount of composite used in oral cavity is limited in cement space. As a results, marginal leakage, hypersensitivity, secondary caries, and discoloration are significantly diminished. The first generation laboratory composite resin used in indirect resin restoration had been widespread in 1980's and the second generation laboratory composite resins were developed in 1990's. The second generation laboratory composite resins are called Ceramic Polymer. The physical properties of Ceramic Polymer are improved because of high content of inorganic filler, and the esthetics and biocompatibility are better than that of the first generation resin. So the application range using composite resin have been broadened. The purpose of this paper is to introduce Targis & Vectris system that is classified to second generation laboratory composite and to report several cases in which the system was utilized for restoration.

  • PDF

Effect of Phenolic Resin According to Relative Humidity on Submerged Entry Nozzle with ZrO2-C System in Fabrication Process (ZrO2-C계 침지노즐 제조시 상대습도에 따른 바인더용 페놀수지의 영향)

  • Yoon, Sang-Hyeon;Kim, Jang-Hoon;Kim, Ju-Young;Lee, Hee-Soo;Koo, Young-Seok
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.4
    • /
    • pp.293-297
    • /
    • 2011
  • The thermodynamic behavior of phenolic resin was investigated to verify the relation between the properties of porous ceramics with $ZrO_2$-C system for submerged entry nozzle and the characteristics of phenolic resin with various relative humidity. The green and the sintered density were decreased between 25% and 50% relative humidity, whereas they were gradually enhanced above 50% relative humidity. The highest value of apparent porosity was 20.1% and the minimum compressive strength was 69MPa in the specimen using the powder exposed to 50% relative humidity. As a result of thermal analysis for phenolic resin, the shift of endothermic peak to low temperature and the reduction of exothermic peak were observed, and the peaks corresponded to melting and curing of phenolic resin, respectively. The melting and the curing of phenolic resin generate the change of green density, and it can affect the properties of submerged entry nozzle.