• Title/Summary/Keyword: centrifuge tests

Search Result 224, Processing Time 0.024 seconds

Development of Dissipation Model of Excess Pore Pressure in Liquefied Sand Ground (액상화된 모래지반의 과잉간극수압 소산모델 개발)

  • Kim, Sung-Ryul;Hwang, Jae-Ik;Ko, Hon-Yim;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.10
    • /
    • pp.13-22
    • /
    • 2007
  • Recently, many researches on the dissipation of excess pore pressure in liquefied sand grounds have been performed to evaluate post-liquefaction behavior of structures. In this research, centrifuge tests were performed to analyze liquefaction behavior of level saturated sand grounds. Based on the test results, the evaluation model of solidified layer thickness was developed to simulate non-linear variation of the thickness with time. The thickness evaluation model was combined with the solidification theory and the consolidation theory in order to simulate dissipation of excess pore pressure. The suggested dissipation model properly estimated the solidified layer thickness and the time history of excess pore pressure.

Site Classification and Design Response Spectra for Seismic Code Provisions - (III) Verification (내진설계기준의 지반분류체계 및 설계응답스펙트럼 개선을 위한 연구 - (III) 검증)

  • Cho, Hyung Ik;Satish, Manandhar;Kim, Dong Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.257-268
    • /
    • 2016
  • In the companion papers (I, II), site-specific response analyses were performed at more than 300 domestic sites and a new site classification system and design response spectra (DRS) were proposed using the results of the site-specific response analyses. In this paper, the proposed site classification system and the design response spectra are compared with those in other seismic codes and verified by different methods. Firstly, the design response spectra are compared with the design response spectra in Eurocode 8, KBC 2016 and MOCT 1997 to estimate quantitative differences and general trends. Secondly, site-specific response analyses are carried out using $V_S$-profiles obtained using field seismic tests and the results are compared with the proposed DRS in order to reduce the uncertainty in using the SPT-N value in site-specific response analyses in the companion paper (I). In addition, site coefficients from real earthquake records measured in Korean peninsula are used to compare with the proposed site coefficients. Finally, dynamic centrifuge tests are also performed to simulate the representative Korean site conditions, such as shallow depth to bedrock and short-period amplification characteristics. The overall results showed that the proposed site classification system and design response spectra reasonably represented the site amplification characteristic of shallow bedrock condition in Korea.

Analysis of the Structural Behaviours of Aluminum Tunnel Lining in Joomunjin Standard Soil by Centrifugal Model Tests (원심모형실험을 이용한 주문진 표준사 지반내 알루미늄 모형 터널 복공의 역학적 거동에 관한 연구)

  • 김택곤;김영근;박중배;이희근
    • Tunnel and Underground Space
    • /
    • v.9 no.2
    • /
    • pp.114-130
    • /
    • 1999
  • It is very important to study on the structural behaviors of structurally damaged tunnel linings. A series of centrifuge model tests were performed in order to investigate different behaviors of tunnel linings. A 1/100-scaled aluminum horseshoe tunnel linings with a radius 5 cm, height 8 cm were buried in a depth with dry Joomunjin standard sand, the relative density of which was 86%. Such sectional forces as bending moments and thrusts along the tunnel circumference were measured by twelve strain gages. Earth pressures in soil mass and on the outside of lining model were estimated by pressure transducers, ground surface settlements at a center and edges by using LVDTs.

  • PDF

A Study on the Bahavior and Failure Mechanism of Soil Nailing Walls using Centrifuge Model Tests (원심모형실험을 이용한 소일네일링 벽체의 거동 및 파괴메카니즘에 관한 연구)

  • Kim, Young-Gil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.12
    • /
    • pp.5963-5973
    • /
    • 2011
  • Current design and analyzing methods about soil nailing structures, developed on the basis of results obtained from experiments in laboratory or in field and numerical analyses, have applied different interaction mechanisms between the reinforced nails and the surrounding ground, and different safety factors against failure have been obtained. They might be proper approaches if the assumptions about rigidity of nails and ground conditions are met with actual conditions occurred in field. Otherwise, they would result in designing on analyzing in inappropriate ways so that it is needed to evaluate the validity of them. Therefore, in this research using the Centrifugal Model Testing, numerical parameters experiments about soil nailing structures' behavior and failure mechanism were performed. In the numerical parameters experiments, transmuted nail's length, setting angle, nail's front panel, stiffness variously, and increased the level of gravity until wall model was destroyed. Based on experimental results, we compared the effect, failure mechanism caused from parameters changes. By reviewing and comparing centrifugal model test results and methods currently in use, verified validity of existing methods.

Three-Dimensional Numerical Analysis for Verifying Behavioral Mechanism and Bearing Capacity Enhancement Effect According to Tip Elements (선단 고정 지압구의 거동 메커니즘과 형상에 따른 지지력 증대효과 검증을 위한 3차원 수치해석)

  • Lee, Seokhyung;Kim, Seok-Jung;Han, Jin-Tae;Jin, Hyun-Sik;Hwang, Gyu-Cheol;Lee, Jeong-Seob
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.9
    • /
    • pp.53-67
    • /
    • 2022
  • Micropiles are cast-in-place-type piles with small diameters. They are widely used for the foundation reinforcement of existing buildings and structures because this technique is easy to construct and economic. A base expansion structure is developed following the mechanism of radial expansion at the pile tip under compression. Numerical analysis, durability tests, and centrifuge tests have been conducted using the base expansion structure. In this study, three-dimensional numerical modeling was performed to describe the behavioral mechanism of the base expansion structure using steel bar penetration under compressive loading, and numerical analyses using centrifuge test conditions were performed for the comparative studies. Additionally, the base structure was modified based on the results of lab-scale analyses, and the bearing capacities of micropiles were compared using field-scale numerical analyses under various ground conditions.

Stability of rectangular tunnel in improved soil surrounded by soft clay

  • Siddharth Pandey;Akanksha Tyagi
    • Geomechanics and Engineering
    • /
    • v.34 no.5
    • /
    • pp.491-505
    • /
    • 2023
  • The practical usage of underground space and demand for vehicular tunnels necessitate the construction of non-circular wide rectangular tunnels. However, constructing large tunnels in soft clayey soil conditions with no ground improvement can lead to excessive ground deformations and collapse. In recent years, in situ ground improvement techniques such as jet grouting and deep cement mixing are often utilized to perform cement-stabilisation around the tunnel boundary to prevent large deformations and failure. This paper discusses the stability characteristics and failure behaviour of a wide rectangular tunnel in cement-treated soft clays. First, the plane strain finite element model is developed and validated with the results of centrifuge model tests available in the past literature. The critical tunnel support pressures computed from the numerical study are found to be in good agreement with those of centrifuge model tests. The influence of varying strength and thickness of improved soil surround, and cover depth are studied on the stability and failure modes of a rectangular tunnel. It is observed that the failure behaviour of the tunnel in improved soil surround depends on the ratio of the strength of improved soil surround to the strength of surrounding soil, i.e., qui/qus, rather than just qui. For low qui/qus ratios,the stability increases with the cover; however, for the high strength improved soil surrounds with qui >> qus, the stability decreases with the cover. The failure chart, modified stability equation, and stability chart are also proposed as preliminary design guidelines for constructing rectangular tunnels in the improved soil surrounded by soft clays.

Characteristics of Behavior of Pressurized light-weight steel Anchor according to undrained shear strength (비배수 전단강도에 따른 압입식 경량강재앵커블록의 거동 특성)

  • Heo, Yol;Ahn, Kwang-Kuk;Park, Kyoung-Soo;Lee, Yong-Jun;Kang, Hong-Sig
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.219-224
    • /
    • 2009
  • In this study, the characteristics of pullout behavior of Pressurized light-weight steel Anchor was investigated through centrifuge model tests considering pull-out angle $0^{\circ}$ with changing undrained shearstrength(0~1, 2~4, 5~7kPa) of clay. According to the results of tests, the yield pullout load of clay ground was gradually increased up to 30% as undrained shear strength was increased. Therefore, it was known that the yield pullout load was affected by increasing the undrained shear strength, in addition, the pattern of behavior was not changed.

  • PDF

Characteristics of Bearing Capacity for H pile by Model Test (모형실험을 이용한 H말뚝의 지지력 특성)

  • 오세욱;이준대
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.3
    • /
    • pp.99-105
    • /
    • 2001
  • This paper presents results km a series of model tests oil vertically loaded single piles to compare the behaviors of H and pipe piles under the same ground condition. The aims of this paper were to compare the bearing capacity of H-pile md pipe piles under in the same ground condition and to estimate the effect of gravity acceleration and relative soil density. Relative density of soil were made to be 40%, 80% and embedded length of pile on sand was increased by 10, 12, 14, 16 times of the diameter of pile, respectively. As a results of test series, allowable load of H-pile is from 6.4% to 18.2% larger than allowable load of pipe pile in relative density 80% and from 9.1% to 39.4% larger than allowable load of pipe pile in relative density 40%. As a results of numerical analysis, we were predicted behaviour of stress-displacement of pile with model test. In the case of relative density 80% and 40%, bearing capacity of H pile represent from 17.74% to 18.6% larger than allowable load of pipe pile.

  • PDF

An Experimental Study on Overflow and Internal Erosion Protection Technology of a Reservoir (저수지 제체월류 및 내부침식 보호기술 모형실험 연구)

  • Jin, Ji-Huan;Lee, Tae-Ho;Yoo, Jeon-Yong;Im, Eun-Sang;Lee, Seung-Joo;Kim, Yong-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.181-191
    • /
    • 2019
  • Most of the reservoirs in South Korea are fill dam, and overflow and piping phenomena have been detected as the main causes of failure of fill dam. In this study, an operating ◯◯ reservoir located in Gongju-si is modeled in centrifuge model test to study the behavior of reservoir during water level rise and overflow conditions. In order to simulate seepage and overflow in the real reservoir, the model was constructed in 1/50 scale, and deteriorated and reinforced conduits were installed. After modeling the reinforced and deteriorated conditions of the conduits, LVDTs, pore pressure gauges were installed and centrifuge model tests were carried out with water level rise and overflow conditions in order to analyze the reservoir behavior according to the reinforcement methods. The results of centrifuge model test in water level rise condition show that deteriorated conduit has adverse effects in the stability of the reservoir body, and the conduit which is reinforced by the inverse lining method has enhanced stability of the reservoir body. Moreover, installation of water spillway is seen to prevent the scour and erosion of the reservoir body. The study provides a basic data required for the reinforcement of conduit and water spillway in the reservoir.

Centrifugal Test on Behavior of the Dolphin Structure under Ship Collision (선박충돌 시 돌핀 구조물의 거동에 대한 원심모형실험)

  • Oh, SeungTak;Bae, WooSeok;Cho, SungMin;Heo, Yol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.1
    • /
    • pp.61-70
    • /
    • 2011
  • The impact protection system consists of an arrangement of circular sheet pile cofferdams-denoted dolphin structuredeeply embedded in the seabed, filled with crushed rock and closed at the top with a robust concrete cap. Centrifuge model tests were performed to investigation the behaviors of dolphins in this study. Total 7 quasi-model tests and 11 dynamic model tests were performed. The main experimental results can be summarized as follows. Firstly, The experimental force-displacement results for quasi-static tests show a limited influence on the initial stiffness of the structure from the change in fill density and the related change in the stiffness of the fill. And by comparing the dissipation at the same dolphin displacement it was found that the denser fill increase the dissipation by 16% for the 20m dolphin and by 23% for the 30m dolphin. The larger sensitivity for the large dolphin is explained by a larger contribution to the dissipation from strain in the fill. In low level impacts the dynamic force-response is up to 26~58% larger than the quasi-static and the dissipation response is showed larger in small displacement. Hence, it is concluded conservative to use the quasi-static response characteristics in the approximation of the response, and it is further concluded that the dolphin resistance to low level impacts is demonstrated to be equivalent and even superior to the high level impacts.