• Title/Summary/Keyword: central upwind scheme

Search Result 21, Processing Time 0.021 seconds

NUMERICAL MODELING OF NON-CAPACITY MODEL FOR SEDIMENT TRANSPORT BY CENTRAL UPWIND SCHEME

  • S. JELTI;A. CHARHABIL;J. EL GHORDAF
    • Journal of applied mathematics & informatics
    • /
    • 제41권1호
    • /
    • pp.181-192
    • /
    • 2023
  • This work deals with the numerical modeling of dam-break flow over erodible bed. The mathematical model consists of the shallow water equations, the transport diffusion and the bed morphology change equations. The system is solved by central upwind scheme. The obtained results of the resolution of dam-beak problem is presented in order to show the performance of the numerical scheme. Also a comparison of central upwind and Roe schemes is presented.

A TREATMENT OF CONTACT DISCONTINUITY FOR CENTRAL UPWIND SCHEME BY CHANGING FLUX FUNCTIONS

  • Shin, Moungin;Shin, Suyeon;Hwang, Woonjae
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제17권1호
    • /
    • pp.29-45
    • /
    • 2013
  • Central schemes offer a simple and versatile approach for computing approximate solutions of nonlinear systems of hyperbolic conservation laws. However, there are large numerical dissipation in case of contact discontinuity. We study semi-discrete central upwind scheme by changing flux functions to reduce the numerical dissipation and we perform numerical computations for various problems in case of contact discontinuity.

A well-balanced PCCU-AENO scheme for a sediment transport model

  • Ndengna, Arno Roland Ngatcha;Njifenjou, Abdou
    • Ocean Systems Engineering
    • /
    • 제12권3호
    • /
    • pp.359-384
    • /
    • 2022
  • We develop in this work a new well-balanced preserving-positivity path-conservative central-upwind scheme for Saint-Venant-Exner (SVE) model. The SVE system (SVEs) under some considerations, is a nonconservative hyperbolic system of nonlinear partial differential equations. This model is widely used in coastal engineering to simulate the interaction of fluid flow with sediment beds. It is well known that SVEs requires a robust treatment of nonconservative terms. Some efficient numerical schemes have been proposed to overcome the difficulties related to these terms. However, the main drawbacks of these schemes are what follows: (i) Lack of robustness, (ii) Generation of non-physical diffusions, (iii) Presence of instabilities within numerical solutions. This collection of drawbacks weakens the efficiency of most numerical methods proposed in the literature. To overcome these drawbacks a reformulation of the central-upwind scheme for SVEs (CU-SVEs for short) in a path-conservative version is presented in this work. We first develop a finite-volume method of the first order and then extend it to the second order via the averaging essentially non oscillatory (AENO) framework. Our numerical approach is shown to be well-balanced positivity-preserving and shock-capturing. The resulting scheme could be seen as a predictor-corrector method. The accuracy and robustness of the proposed scheme are assessed through a carefully selected suite of tests.

난류 Offset 분류에 관한 수치해석 (Calculation of Turbulent Offset Jet)

  • 이우정;김광용;조용철
    • 한국정밀공학회지
    • /
    • 제8권4호
    • /
    • pp.23-32
    • /
    • 1991
  • The paper discusses the problem of the flow over the backward facing step and the offset jet, which are calculated numerically. Standard k- .epsilon. model and its LPS modification are used as turbulence models. Hybrid central/upwind scheme and skew- upwind scheme are used as numerical schemes. The numerical scheme has a strong influence on the offset jet rather than the flow over backward facing step. The skew-upwind scheme gives good results in both cases. However, the k- .epsilon. model with LPS modification yields no remarkable improvements in the predictions of both flows. The skew-upwind scheme improves the prediction of reattachment length in the offset jet.

  • PDF

CENTRAL SCHEMES WITH LAX-WENDROFF TYPE TIME DISCRETIZATIONS

  • Shin, Su-Yeon;Hwang, Woon-Jae
    • 대한수학회보
    • /
    • 제48권4호
    • /
    • pp.873-896
    • /
    • 2011
  • The semi-discrete central scheme and central upwind scheme use Runge-Kutta (RK) time discretization. We do the Lax-Wendroff (LW) type time discretization for both schemes. We perform numerical experiments for various problems including two dimensional Riemann problems for Burgers' equation and Euler equations. The results show that the LW time discretization is more efficient in CPU time than the RK time discretization while maintaining the same order of accuracy.

비정렬 셀 중심 방법에서 대류플럭스의 수치근사벙법 평가 (EVALUATION OF NUMERICAL APPROXIMATIONS OF CONVECTION FLUX IN UNSTRUCTURED CELL-CENTERED METHOD)

  • 명현국
    • 한국전산유체공학회지
    • /
    • 제11권1호
    • /
    • pp.36-42
    • /
    • 2006
  • The existing numerical approximations of convection flux, especially the spatial higher-order difference schemes, in unstructured cell-centered finite volume methods are examined in detail with each other and evaluated with respect to the accuracy through their application to a 2-D benchmark problem. Six higher-order schemes are examined, which include two second-order upwind schemes, two central difference schemes and two hybrid schemes. It is found that the 2nd-order upwind scheme by Mathur and Murthy(1997) and the central difference scheme by Demirdzic and Muzaferija(1995) have more accurate prediction performance than the other higher-order schemes used in unstructured cell-centered finite volume methods.

동해의 지진해일 처오름 모의 (Simulation of Run-up of Tsunamis in the East Sea)

  • 김재홍;조용식
    • 한국수자원학회논문집
    • /
    • 제38권6호
    • /
    • pp.461-469
    • /
    • 2005
  • 본 연구에서는 지진해일에 의하여 동해안에 발생하는 처오름을 모의하기 위하여 2차 정확도의 풍상차분기법을 사용하였으며, 그 결과는 현장관측값과 1차 정확도의 풍상차분기법의 산정 결과와 비교하였다. 수치해석 모형에서는 지배방정식으로 원해에서는 선형 천수 방정식, 근해에서는 비선형 천수방정식을 사용하였다. 대상 지진해일은 1983년 지진해일과 1993년 지진해일이다. 수치해석 결과 동해안의 처오름높이를 잘 재현하는 것으로 확인되었다. 또한, 지진해일 처오름 모의 결과를 범람도 작성에 이용할 수 있을 것으로 판단된다.

동해 전파특성을 고려한 지진해일 모의 (Numerical Simulation of Tsunamis Considering the Characteristics of Propagation in the East Sea)

  • 손대희;최문규;손일수;조용식
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2007년도 정기총회 및 학술발표대회
    • /
    • pp.172-176
    • /
    • 2007
  • In this study, the numerical model for simulation of tsunamis is constructed by using the dispersion-correction scheme, 2nd upwind scheme, dynamic linking method, and so forth. The composed numerical model is used to simulate a hitorical tsunami event. The target tsunami event is the 1983 Central East Sea Tsunami. And, the predicted run-up heights of the tsunami at Imwon port are very reasonable compared to available observed data.

  • PDF

자유표면 유동 시뮬레이션을 위한 고정확도 수치도식의 검토 (Study on High Accurate Schemes for Simulation of Free-surface Flow)

  • 박종천;이병혁;김정후
    • 한국해양공학회지
    • /
    • 제20권4호
    • /
    • pp.31-36
    • /
    • 2006
  • Numerical schemes for spacing and time are tested to accurately simulate the wave propagation. The tested numerical schemesinclude 2nd-order central differencing, l-order upwind scheme, 2nd-order Leith scheme, 3rd-order MUSCLE, QUICK and QUICKEST schemes in spacing and the Euler and 4th-order Runge-Kutta(R-K) schemes in time. It is seen that more accurate results are expected when the higher-order schemes, especially the schemes combined with a TVD control limiter, are used for solving the wave equation. The 3rd-order upwind scheme with limiter and the 4th-order R-K scheme in tim£ are finally applied to the wave-making simulation in a digital wave tank.

HIGH-ORDER WEIGHTED DIFFERENCE SCHEMESTHE CONVECTION-DIFFUSION PROBLEMS

  • Choo, S.M.;Chung, S.K.;Kim, Y.H.
    • 대한수학회논문집
    • /
    • 제14권4호
    • /
    • pp.815-832
    • /
    • 1999
  • High-order weighted difference schemes with uniform meshes are considered for the convection-diffusion problem depending on Reynolds numbers. For small Reynolds numbers, a weighed cen-tral difference scheme is suggested since there is no boundary layer. For large Reynolds numbers, we propose a modified up wind method with an artificial diffusion in order to overcome nonphysical oscilla-tion of central schemes and obtain good accuracy in the boundary later. Existence and corresponding error estimates of the solution for the difference scheme have been shown. Numerical experiments are provided to back up the analysis.

  • PDF