• Title/Summary/Keyword: central control

Search Result 2,486, Processing Time 0.031 seconds

Aerodynamic Flutter Control for Typical Girder Sections of Long-Span Cable-Supported Bridges

  • Yang, Yongxin;Ge, Yaojun
    • Wind and Structures
    • /
    • v.12 no.3
    • /
    • pp.205-217
    • /
    • 2009
  • Aerodynamic flutter control for long-span cable-supported bridges was investigated based on three basic girder sections, i.e. streamlined box girder section, box girder section with cantilevered slabs and two-isolated-girder section. Totally four kinds of aerodynamic flutter control measures (adding fairings, central-slotting, adding central stabilizers and adjusting the position of inspection rail) were included in this research. Their flutter control effects on different basic girder sections were evaluated by sectional model or aeroelastic model wind tunnel tests. It is found that all basic girder sections can get aerodynamically more stabled with appropriate aerodynamic flutter control measures, while the control effects are influenced by the details of control measures and girder section configurations. The control effects of the combinations of these four kinds of aerodynamic flutter control measures, such as central-slotting plus central-stabilizer, were also investigated through sectional model wind tunnel tests, summarized and compared to the flutter control effect of single measure respectively.

An experimental study on the optimal control algorithm for central heating system (중앙난방 시스템의 최적제어 알고리즘의 적용을 위한 실험적 연구)

  • Ahn, Byung-Cheon;Chun, Won-Ik
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.463-468
    • /
    • 2005
  • An experimental study on the optimal control algorithm for central heating system for minimizing energy consumption while maintaining the comfort of indoor thermal en vironment in terms of the environmental variables such as loads and weather. experimental study has been done by one using the prototype of central heating system. As a result the optimal control algorithm shows good energy performance in comparison with conventional control one.

  • PDF

A Study on Improving the Train Radio Call Using Continuous Digit Recognition (연속숫자음 인식을 이용한 열차무선호출방식 개선방안 연구)

  • Choi, Yoon-Seog;Lee, Sang-Bae
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2775-2781
    • /
    • 2011
  • Urban Transit Train Radio is Radio Communication system that is used official business as leading motive for train safety running among the train crew and the central control center and drive-caring-chamber on main line and branch line. This system is operated that organizes talking path on handset of terminal after the train crew receives audio and understands call voice on speaker of terminal at calling the train of the central control center. When the central control center calls the specific train uses all call radio form, the train crew doesn't recognize the call cause the train situation, noise and action as train control. So there is a delay response cause reset call at the central control center. This research discusses the management of subway radio system and describes the call the train system that recognize train call number of all-call used between the central control center and the train crew.

  • PDF

Robust Adaptive Output Feedback Control Design for a Multi-Input Multi-Output Aeroelastic System

  • Wang, Z.;Behal, A.;Marzocca, P.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.2
    • /
    • pp.179-189
    • /
    • 2011
  • In this paper, robust adaptive control design problem is addressed for a class of parametrically uncertain aeroelastic systems. A full-state robust adaptive controller was designed to suppress aeroelastic vibrations of a nonlinear wing section. The design used leading and trailing edge control actuations. The full state feedback (FSFB) control yielded a global uniformly ultimately bounded result for two-axis vibration suppression. The pitching and plunging displacements were measurable; however, the pitching and plunging rates were not measurable. Thus, a high gain observer was used to modify the FSFB control design to become an output feedback (OFB) design while the stability analysis for the OFB control law was presented. Simulation results demonstrate the efficacy of the multi-input multi-output control toward suppressing aeroelastic vibrations and limit cycle oscillations occurring in pre- and post-flutter velocity regimes.

The Study on the Mechanical Properties with Various Control Cooling Conditions for Ball Joint Socket

  • Bae M.H.;Lee J.Y.;Jeong S.C.;Seo S.Y.;Kang S.W.;Lim K.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.138-142
    • /
    • 2003
  • In this study, to show well favorable characteristics of warm forged material, we compared and analyzed microstructure and mechanical properties of general hot-forged material which finished heat treatment with warm-forged material which was produced by control cooling condition. Along with this, we suggested better direction of control cooling condition to be able to remove heat treatment process while satisfying mechanical properties.

  • PDF

A Novel Module Control Technology for High-Power LED Backlight

  • Su, Chun-Wei;Chiang, Chin-I;Li, Tzung-Yang;Tsou, Chien-Lung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1326-1329
    • /
    • 2009
  • In large-area LCD displays, we have developed two new control technologies for high-power LED backlight. The Novel control technology called scanning control and local gray control. In addition, a conceptual display system power management was developed. We have implemented high power-LED module driving system which can achieve power saving and cost down. Finally, we designed LED light-bar module of the side type as a backlight source. It not only achieved light & thin but also reduced the quantity of LEDs.

  • PDF

Real Time Near Optimal Control Application Strategy of Central Cooling System (중앙냉방시스템의 실시간 준최적제어 적용에 따른 실험적 연구)

  • Ahn, Byung-Cheon;Song, Jae-Yeob;Joo, Yong-Duk;Kim, Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.7
    • /
    • pp.470-477
    • /
    • 2008
  • The near-optimal control algorithm for central cooling system has been developed for minimizing energy consumption while maintaining the comfort of indoor thermal environment in terms of the environmental variables such as time varying indoor cooling load and outdoor temperatures. The optimal set-points of control parameters with near-optimal control are supply air and chilled water temperatures. The near optimal control algorithm has been implemented by using LabVIEW program in order to analyze energy performance for central cooling control system.

An Implementation for Near-Optimal Set Point Control for Central Cooling Systems (중앙냉방시스템의 준최적 설정점제어기법 구현에 관한 연구)

  • Baek, Seung-Jae;Song, Jae-Yeob;Ahn, Byung-Cheon;Joo, Yong-Duk;Kim, Jin
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.46-51
    • /
    • 2007
  • The near-optimal control algorithm for central cooling system has been developed for minimizing energy consumption while maintaining the comfort of indoor thermal environment in terms of the environmental variables such as time varying indoor cooling load and outdoor temperatures. The optimal set-points of control parameters with near-optimal control are supply air temperature and chilled water temperature. This study has been done by using LapVIEW program with PID control in order to analyze the central cooling system energy saving.

  • PDF

Adaptive and Robust Aeroelastic Control of Nonlinear Lifting Surfaces with Single/Multiple Control Surfaces: A Review

  • Wang, Z.;Behal, A.;Marzocca, P.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.4
    • /
    • pp.285-302
    • /
    • 2010
  • Active aeroelastic control is an emerging technology aimed at providing solutions to structural systems that under the action of aerodynamic loads are prone to instability and catastrophic failures, and to oscillations that can yield structural failure by fatigue. The purpose of the aeroelastic control among others is to alleviate and even suppress the vibrations appearing in the flight vehicle subcritical flight regimes, to expand its flight envelope by increasing the flutter speed, and to enhance the post-flutter behavior usually characterized by the presence of limit cycle oscillations. Recently adaptive and robust control strategies have demonstrated their superiority to classical feedback strategies. This review paper discusses the latest development on the topic by the authors. First, the available control techniques with focus on adaptive control schemes are reviewed, then the attention is focused on the advanced single-input and multi-input multi-output adaptive feedback control strategies developed for lifting surfaces operating at subsonic and supersonic flight speeds. A number of concepts involving various adaptive control methodologies, as well as results obtained with such controls are presented. Emphasis is placed on theoretical and numerical results obtained with the various control strategies.

Control Characteristics with Flow Rate Control Methods in Central Heating System (중앙난방시스템의 유량제어방식에 따른 제어특성 연구)

  • Song, Jae-Yeob;Ahn, Byung-Cheon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.7 no.1
    • /
    • pp.32-37
    • /
    • 2011
  • In this study, control characteristics and energy performance with flow rate control methods were reviewed with the simulation. The heating system is classified such as fan coil unit and HVAC system currently used in buildings with valve control and pump inverter control. The simulation analysis program is made by TRNSYS ver. 15 with the actual data. As a result of this study, the central heating system with pump inverter control decreases electricity energy and reduces gas consumption. Inverter control method shows better performance in comparison with valve control one for energy saving.