• Title/Summary/Keyword: center wavelength

Search Result 842, Processing Time 0.025 seconds

Wavelength and Repetition-Rate Tunable Optical Pulse Generation for Ultrafast OTDM/WDM (초고속 OTDM/WDM을 위한 파장 및 반복율 가변 광 펄스 발생)

  • Choi, Kyoung-Sun;Han, Chong-Min;Seo, Dong-Sun;Jhon, Young-Min;Lee, Seok
    • Journal of IKEEE
    • /
    • v.5 no.2 s.9
    • /
    • pp.201-210
    • /
    • 2001
  • Wavelength and repetition-rate tunable optical pulse-trains for ultrafast optical time- and wavelength division multiplexing are generated from a semiconductor fiber ring laser by optical injection mode-locking. The pulse trains show the pulse with of ${\sim}10$ ps and the wavelength tuning of wider than 30 nm at various repetition-rates of 10 GHz, 20 GHz, 30 GHz and 40 GHz, respectively.

  • PDF

Tools for Echelle Spectrograph of NYSC 1m Telescope

  • Kang, Wonseok;Kim, Taewoo;Kim, Jeongeun;Shin, Yong Cheol;Yoo, Jihyun;Jeong, Shinu;Choi, Yoonho;Kwon, Sun-gill
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.50.1-50.1
    • /
    • 2018
  • We present the development of tools for Echelle spectrograph of NYSC 1-m telescope. The eShel spectrograph(Shelyak) has operated at Deokheung Optical Astronomy Observatory since 2016. We carried out test observation in 2016 and completed the preprocessing and wavelength calibration of the spectroscopic data using IRAF. Based on the reduction process in IRAF, PySpecW, a set of tools for spectroscopic data was developed in 2017. PySpecW was optimized for NYSC 1m telescope, and written in Python for youth to use easily on any OS. PySpecW consists of preprocessing, aperture tracing, aperture extraction, wavelength calibration, and dispersion correction for extracted spectra.

  • PDF

Spectra Responsibility of Quantum Dot Doped Organic Liquid Scintillation Dosimeter for Radiation Therapy

  • Kim, Sung-woo;Cho, Byungchul;Cho, Sangeun;Im, Hyunsik;Hwang, Ui-jung;Lim, Young Kyoung;Cha, SeungNam;Jeong, Chiyoung;Song, Si Yeol;Lee, Sang-wook;Kwak, Jungwon
    • Progress in Medical Physics
    • /
    • v.28 no.4
    • /
    • pp.226-231
    • /
    • 2017
  • The aim is to investigate the spectra responsibilities of QD (Quantum Dot) for the innovation of new dosimetry application for therapeutic Megavoltage X-ray range. The unique electrical and optical properties of QD are expected to make it a good sensing material for dosimeter. This study shows the spectra responsibility of toluene based ZnCd QD and PPO (2.5-diphenyloxazol) mixed liquid scintillator. The QDs of 4 sizes corresponding to an emission wavelength (ZnCdSe/ZnS:$440{\pm}5nm$, ZnCdSeS:470, 500, $570{\pm}5nm$) were utilized. A liquid scintillator for control sample was made of toluene, PPO. The Composition of QD loaded scintillators are about 99 wt% Toluene as solvent, 1 wt% of PPO as primary scintillator and 0.05, 0.1, 0.2 and 0.4 wt% of QDs as solute. For the spectra responsibility of QD scintillation, they were irradiated for 30 second with 6 MV beam from a LINAC ($Infinity^{TM}$, Elekta). With the guidance of 1.0 mm core diameter optical fiber, scintillation spectrums were measured by a compact CCD spectrometer which could measure 200~1,000 nm wavelength range (CCS200, Thorlabs). We measured the spectra responsibilities of QD loaded organic liquid scintillators in two scintillation mechanisms. First was the direct transfer and second was using wave shifter. The emission peaks from the direct transfer were measured to be much smaller luminescent intensity than based on the wavelength shift from the PPO to QDs. The emission peak was shifted from PPO emission wavelength 380 nm to each emission wavelength of loaded QD. In both mechanisms, 500 nm QD loaded samples were observed to radiate in the highest luminescence intensity. We observed the spectra responsibility of QD doped toluene based liquid scintillator in order to innovate QD dosimetry applicator. The liquid scintillator loading 0.2 wt% of 500 nm emission wavelength QD has most superior responsibility at 6 MV photon beam. In this study we observed the spectra responsibilities for therapeutic X-ray range. It would be the first step of innovating new radiation dosimetric methods for radiation treatment.

The Analysis of Yellowish Gravity-Mura in FFS Mode

  • Park, J.B.;Park, E.J.;Park, S.H.;Park, I.C.;Kim, H.Y.;Lee, K.H.;Lee, J.Y.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.780-783
    • /
    • 2006
  • In this paper, we confirmed the yellowish gravity-mura phenomenon in Fringe-Field Switching (FFS) mode using 2-D simulation. As the cell gap increases, while the LC efficiency of blue wavelength remains almost same, that of red and green wavelength increases continuously. As a result, yellowish phenomenon occurs.

  • PDF

Transflective Liquid Crystal Display of In-Plane Switching (IPS), Using Patterned Retarder on the Side of the Upper Substrate

  • Hong, Hyung-Ki;Shin, Hyun-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.822-825
    • /
    • 2006
  • We propose a transflective In-Plane Switching mode in which patterned retarder is placed only on the reflective area of the upper substrate side. By selecting optic axes of Half Wavelength Plate and Liquid Crystal as 24 and 90 degree with respect to polarizer, condition of low reflectance for visible wavelength range at black state is found.

  • PDF

Control of Center Wavelength and Bandwidth of Holographic Reflection Filter (홀로그래픽 반사형 필터의 중심파장과 대역폭의 조절방법)

  • 정만호
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.3
    • /
    • pp.276-280
    • /
    • 1993
  • Holographic reflection filters are fabricated by using the dichromated gelatin film. The characteristics of diffraction efficiency, center wavelength, and bandwidth which are important parameters of reflection-type holographic optical elements is explained from the experimental results, and control method of these parameters is presented.

  • PDF

MULTI-WAVELENGTH FIBRIL DYNAMICS AND OSCILLATIONS ABOVE SUNSPOT WAVE PROPAGATION

  • MUMPUNI, EMANUEL S.;HERDIWIJAYA, DHANI;DJAMAL, MITRA;DJAMALUDDIN, THOMAS
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.59-60
    • /
    • 2015
  • High resolution, multi-wavelength images from the Dutch Open Telescope were used to study the detailed mechanisms that might be involved in the multiple layer solar atmosphere observed in high cadence multi-wavelength observations. With the exceptional data observed for active region NOAA 10789 on 2005 July 13th, we study the changing pattern of the fibril using multi-wavelength tomography of the $H{\alpha}$ line center and blue wing, Ca II H, and the G Band. It is believed that a long fibril that is rooted in the umbra, with longer apparent periodicity, may be due to morphological changes. To determine this, we conduct phase difference and coherency analysis between points along the fibril to understand how the wave propagates.

Geometrical Analysis and Implementation of the Real-Time Tuning Structure Using Spatial Light Modulator in Photorefractive Tunable Filter (광굴절 가변 필터에서 공간광학변조기를 이용한 실시간 튜닝 구조의 기하학적 해석 및 구현)

  • An, Jun-Won;Kim, Seong-Goo;Kim, Nam
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.12
    • /
    • pp.43-52
    • /
    • 1999
  • We propose a new method for tuning of center wavelength in photorefractive filter using $LiNbO_3$ crystal doped with 0.015Wt.% Fe. through the filter bandwidth property analysis using the geometrical method, a new wavelength selectivity theory was presented. In this scheme, the tuning of the center wavelength can be achieved by the real time incident angle control of the received heam, which was gotten by the spatial light modulator. So, tuning time depend on the response time of the SLM and results in the high speed turing. Because the use of thermally fixed grating in our filter, it has uniform diffraction property to the all filtering wavelength. Designed tunable filter has 4nm bandwidth and composed of the three channel with 10nm space. From the optical experiment, we get the 4.5nm, 4.25nm, 4nm bandwidth and 1530.5nm, 1540.5nm, 1549.5nm center wavelength respectively.

  • PDF

OPTICAL-INFRARED AND HIGH-ENERGY ASTRONOMY COLLABORATION AT HIROSHIMA ASTROPHYSICAL SCIENCE CENTER

  • UEMURA, MAKOTO;YOSHIDA, MICHITOSHI;KAWABATA, KOJI S.;MIZUNO, TSUNEFUMI;TANAKA, YASUYUKI T.;AKITAYA, HIROSHI;UTSUMI, YOUSUKE;MORITANI, YUKI;ITOH, RYOSUKE;FUKAZAWA, YASUSHI;TAKAHASHI, HIROMITSU;OHNO, MASANORI;UI, TAKAHIRO;TAKAKI, KATSUTOSHI;EBISUDA, NANA;KAWAGUCHI, KENJI;MORI, KENSYO;OHASHI, YUMA;KANDA, YUKA;KAWABATA, MIHO;TAKATA, KOJI;NAKAOKA, TATSUYA
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.679-682
    • /
    • 2015
  • The Hiroshima Astrophysical Science Center (HASC) was founded in 2004 at Hiroshima University, Japan. The main mission of this institute is the observational study of various transient objects including gamma-ray bursts, supernovae, novae, cataclysmic variables, and active galactic nuclei by means of multi-wavelength observations. HASC consists of three divisions; the optical-infrared astronomy division, high-energy astronomy division, and theoretical astronomy division. HASC is operating the 1.5m optical-infrared telescope Kanata, which is dedicated to follow-up and monitoring observations of transient objects. The high-energy division is the key operation center for the Fermi gamma-ray space telescope. HASC and the high-energy astronomy group in the department of physical science at Hiroshima University are closely collaborating with each other to promote multi-wavelength time-domain astronomy. We report the recent activities of HASC and some science topics pursued by this multi-wavelength collaboration.

Planar Optical Waveguide Temperature Sensor Based on Etched Bragg Gratings Considering Nonlinear Thermo-optic Effect

  • Ahn, Kook-Chan;Lee, Sang-Mae;Jim S. Sirkis
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.309-319
    • /
    • 2001
  • This paper demonstrates the development of optical temperature sensor based on the etched silica-based planar waveguide Bragg grating. Topics include design and fabrication of the etched planar waveguide Bragg grating optical temperature sensor. The typical bandwidth and reflectivity of the surface etched grating has been ∼0.2nm and ∼9%, respectively, at a wavelength of ∼1552nm. The temperature-induced wavelength change is found to be slightly non-linear over ∼200$^{\circ}C$ temperature range. Typically, the temperature-induced fractional Bragg wavelength shift measured in this experiment is 0.0132nm/$^{\circ}C$ with linear curve fit. Theoretical models with nonlinear temperature effect for the grating response based on waveguide and plate deformation theories agree with experiments to within acceptable tolerance.

  • PDF