• Title/Summary/Keyword: cementitious binder

Search Result 84, Processing Time 0.023 seconds

Efficacy of supplementary cementitious material and hybrid fiber to develop the ultra high performance hybrid fiber reinforced concrete

  • Sharma, Raju;Bansal, Prem Pal
    • Advances in concrete construction
    • /
    • v.8 no.1
    • /
    • pp.21-31
    • /
    • 2019
  • The rich recipe of ultra high performance concrete (UHPC) offers the higher mechanical, durability and dense microstructure property. The variable like cement/sand ratio, amount of supplementary cementitious material, water/binder ratio, amount of fiber etc. alters the UHPC hardened properties to any extent. Therefore, to understand the effects of these variables on the performance of UHPC, inevitably a stage-wise development is required. In the present experimental study, the effect of sand/cement ratio, the addition of finer material (fly ash and quartz powder) and, hybrid fiber on the fresh, compressive and microstructural property of UHPC is evaluated. The experiment is conducted in three phases; the first phase evaluates the flow value and strength attainment of ingredients, the second phase evaluates the efficiency of finer materials (fly ash and quartz powder) to develop the UHPC and the third phase evaluate the effect of hybrid fiber on the flow value and strength of ultra high performance hybrid fiber reinforced concrete (UHP-HFRC). It has been seen that the addition of fly ash improves the flow value and compressive strength of UHPC as compared to quartz powder. Further, the usage of hybrid fiber in fly ash contained matrix decreases the flow value and improves the strength of the UHP-HFRC matrix. The dense interface between matrix and fiber and, a higher amount of calcium silicate hydrate (CSH) in fly ash contained UHP-HFRC is revealed by SEM and XRD respectively. The dense interface (bond between the fiber and the UHPC matrix) and the higher CSH formation are the reason for the improvement in the compressive strength of fly ash based UHP-HFRC. The differential thermal analysis (DTA/TGA) shows the similar type of mass loss pattern, however, the amount of mass loss differs in fly ash and quartz powder contained UHP-HFRC.

Impact of waste crumb rubber on concrete performance incorporating silica fume and fly ash to make a sustainable low carbon concrete

  • Muhammad, Akbar;Zahoor, Hussain;Pan, Huali;Muhammad, Imran;Blessen Skariah, Thomas
    • Structural Engineering and Mechanics
    • /
    • v.85 no.2
    • /
    • pp.275-287
    • /
    • 2023
  • The use of environmental-friendly building materials is becoming increasingly popular worldwide. Compared to the normal concrete, rubber-based concrete is considered more durable, environmentally friendly, socially and economically viable. In this investigation, M20 grade concrete was designed and the fine aggregates were replaced with crumb rubber of two different micron sizes (0.221 mm and 0.350 mm). Fly ash (FA) and silica fume (SF) replaces the binder as supplementary cementitious materials at a rate of 0, 5, 10, 15, and 20% by weight. The mechanical properties of concrete including compressive strength, tensile, and flexural strength were determined. The polynomial work expectation validates the response surface approach (RSM) concept for optimizing SF and FA substitution. The maximum compressive strength (22.53 MPa) can be observed for the concrete containing 10% crumb rubber, 15% fly ash and 15% silica fume. The reduced unit weight of the rubberized concrete may be attributed to the lower specific gravity of the rubber particles. Two-way ANOVA with a significance criterion of less than 0.001 has been utilized with modest residual error from the lack of fit and the pure error. The predictive model accurately forecasts the variable-response relationship. Since, the crumb rubber is obtained from wasted tires incorporating FA and SF as a cementitious ingredient, it helps to significantly improve mechanical properties of concrete and reduce environmental degradation.

Estimation on the Durability of High-Strength Concrete using Metakaolin (Metakaolin 혼합 고강도 콘크리트의 내구특성 예측)

  • Lee, Sang-Ho;Moon, Han-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.2
    • /
    • pp.173-180
    • /
    • 2005
  • Metakaolin is a cementitious material for producing high-strength concrete. This material is now used as substitute for silica-fume. In this paper, we did the mechanical and durability test such as compressive/tensile/flexural strength test, chloride ion diffusion, chemical attack and repeated freezing and thawing, carbonation test. In the mechanical tests, 10~15% for binder is optimum substitute rate. And, in the chloride ion diffusion test, according to the increase of substitute of metakaolin & silica-fume for binder, the diffusion coefficient was more reduced. In the chemical attack test, by the filler effect of fine powder such metakaolin and silica-fume, the resistance is more excellent than normal concrete. In the other durability test, the concrete using metakaolin also compared with those of silica-fume substitute concrete. Through these tests, we recognized that metakaolin can be used as a substitute for silica-fume.

Engineering Performance of a Rapid Hardening Hydraulic Binder with Hybrid Fiber

  • Li, Mao;Kim, Jin-Man;Choi, Sun-Mi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.3
    • /
    • pp.279-288
    • /
    • 2016
  • The fundamental performance of any construction material should cover at least two phases: safety and serviceability. Safety commonly represents adequate strength, while serviceability encompasses the control of cracking and deflections at service loads. With respect to rapid hydraulic binders as a construction material, the above two phases should also be considered. Recent research on rapid cooling ladle furnace slag (RC-LFS) has drawn much attention, particularly given that it shows remarkable rapid hydraulic ability to pulverize to a fineness of $6,300cm^2/g$. This industrial byproduct could contribute to developing the sustainability of the rapidly hardening cementitious material system. This paper aims to expand upon the applicability of an RC-LFS-based binder that is composed of two parts. It also seeks to illustrate the engineering performance of an RC-LFS-based hybrid fiber-reinforced composite and to increase the strength of the RC-LFS-based composite. Each step of this experiment followed ASTM standards. The engineering performance, in both fresh state and hardening state, was tested and discussed in this paper. According to the experimental results for fresh concrete, the air content increased following the addition of polypropylene fiber. For hardened concrete, the toughness and strength improved following the addition of a hybrid fiber. The hybrid fiber mixture, which contains 0.75% of steel fiber and 0.25% of polypropylene fiber, shows even better engineering performance than other mixtures.

Corrosion Protection of Rebars Using High Durability Polymer Cementitious Materials for Environmental Load Reduction (환경부하저감형 고내구성 폴리머 시멘트계 재료를 이용한 철근 부식저감기술)

  • Kim, Wan-Ki;Chung, Seung-Jin
    • KIEAE Journal
    • /
    • v.10 no.5
    • /
    • pp.131-137
    • /
    • 2010
  • The building industry must aim at high-durability and sustainability. A holistic life cycle based approach is recommended to reduce the environmental load. In recent years, technical innovations in the construction industry have advanced to a great extent, and caused the active research and development of high-performance and multifunctional construction materials. Nowadays, various polymer powders have been commercialized to manufacture construction materials in the form of prepackaged-type products, which have rapidly been developed for lack of skilled workmen in construction sites. Recently, terpolymer powders of improved quality have been developed and commercialized as cement modifiers. And, hydrocalumite is a material that can adsorb the chloride ions (Cl-) causing the corrosion of reinforcing bars and liberate the nitrite ions (NO2-) inhibiting the corrosion in reinforced concrete, and can provide a self-corrosion inhibition function to the reinforced concrete. The purpose of this study is to ascertain the self-corrosion inhibition function of polymer-modified mortars using redispersible powders with hydrocalumite. Polymer-modified mortars using VA/E/MMA and VAE redispersible powders are prepared with various calumite contents and polymer-binder ratios, and tested for chloride ion penetration depth, corrosion inhibition. As a result, regardless of the polymer-binder ratio, the replacement of ordinary portland cement with hydrocalumite has a marked effect on the corrosion-inhibiting property of the polymer-modified mortars. Anti-corrosion effect of polymer-modified mortars using VA/E/MMA terpolymer powder with hydrocalumite is higher than that of VAE copolymer powder.

Effect of PCE superplasticizers on rheological and strength properties of high strength self-consolidating concrete

  • Bauchkar, S.D.;Chore, H.S.
    • Advances in concrete construction
    • /
    • v.6 no.6
    • /
    • pp.561-583
    • /
    • 2018
  • A variety of polycarboxylate ether (PCE)-based superplasticizers are commercially available. Their influence on the rheological retention and slump loss in respect of concrete differ considerably. Fluidity and slump loss are the cardinal features responsible for the quality of concrete. These are related to the dispersion of cement particles and the hydration process which are greatly influenced by type of polycarboxylate ether (PCE)-based superplasticizers. On the backdrop of relatively less studies in the context of rheological retention of high strength self-consolidating concrete (HS-SCC), the experimental investigations were carried out aiming at quantifying the effect of the six different PCE polymers (PCE 1-6) on the rheological retention of HS-SCC mixes containing two types of Ordinary Portland Cements (OPC) and unwashed crushed sand as the fine aggregate. The tests that were carried out included $T_{500}$, V-Funnel, yield stress and viscosity retention tests. The supplementary cementitious materials such as fly ash (FA) and micro-silica (MS) were also used in ternary blend keeping the mix paste volume and flow of concrete constant. Low water to binder ratio was used. The results reveal that not only the PCEs of different polymer groups behave differently, but even the PCEs of same polymer groups also behave differently. The study also indicates that the HS-SCC mixes containing PCE 6 and PCE 5 performed better as compared to the mixes containing PCE 1, PCE 2, PCE 3 and PCE 4 in respect of all the rheological tests. The PCE 6 is a new class of chemical admixtures known as Polyaryl Ether (PAE) developed by BASF to provide better rheological properties in even in HS-SCC mixes at low water to binder mix. In the present study, the PCE 6, is found to help not only in reduction in the plastic viscosity and yield stress, but also provide good rheological retention over the period of 180 minutes. Further, the early compressive strength properties (one day compressive strength) highly depend on the type of PCE polymer. The side chain length of PCE polymer and the fineness of the cement considerably affect the early strength gain.

The Evaluation of Surface Scaling and Resistance of Concrete to Frost Deterioration with Freezing-Thawing Action by Salt Water (염화물이 함유된 동결수의 동결융해 작용에 따른 콘크리트의 내동해성과 표면열화 평가)

  • Kim, Gyu-Yong;Kim, Moo-Han;Cho, Bong-Suk;Lee, Seung-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.6
    • /
    • pp.143-151
    • /
    • 2007
  • This study presents the experimental results of frost durability including resistance to freezing-thawing and surface scaling of concrete. Mixing design was proportioned with the various water-binder ratio between 0.37 and 0.47 and three different binder compositions corresponding to Type I cement without any supplementary cementitious materials(OPC), Type II cement with 50% blast-furnace slag replacement(BFS50), and ternary cement with Type III cement, 15% fly ash, and 35% slag replacement (BFS35%+FA15%). Test results showed that the mixing design with BFS50% and BFS35%+FA15% exhibited higher durability factor than that made with OPC only. Finally, the use of blend cement containing slag can be used effectively in terms of frost durability of the concrete exposed to severe condition under coastal environment like as flying salt, sea water spray, etc.

Enhancing the Performance of Polypropylene Fiber Reinforced Cementitious Composite Produced with High Volume Fly Ash (폴리프로필렌 섬유로 보강된 하이볼륨 플라이애시 시멘트 복합재료의 성능 향상 기법)

  • Lee, Bang Yeon;Bang, Jin Wook;Kim, Yun Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.118-125
    • /
    • 2013
  • The synthetic fibers including Polyvinyl alcohol and Polyethylene fibers have been successfully used in the manufacture of high ductile fiber reinforced cementitious composites. Polypropylene (PP) fiber has also been used in composites, not for the purpose of achieving a high level of tensile ductility but to improve the fire resistance performance of concrete exposed to high temperatures. This paper discusses the method for enhancing the performance of composites supplemented with PP fiber. Five types of mixture proportions were designed with high volume fly ash for testing the performance of composites. Type I cement and fly ash F were used as binding materials. The water-to-binder ratio was 0.23~0.25, and the amount of PP fiber used was 2 vol%. Polystyrene bead were also used to increase the tensile ductility of composites. A series of experiments including slump, density, compression and uniaxial tension tests were performed to evaluate the performance of cementitious composites supplemented with PP fiber. From the test results, it was exhibited that the performance of composites supplemented with PP fiber can be enhanced by adopting the mechanics and statistics theory.

Mixture-Proportioning Model for Low-CO2 Concrete Considering the Type and Addition Level of Supplementary Cementitious Materials (혼화재 종류 및 치환율을 고려한 저탄소 콘크리트 배합설계 모델)

  • Jung, Yeon-Back;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.427-434
    • /
    • 2015
  • The objective of this study is to establish an rational mixture-proportioning procedure for low-$CO_2$ concrete using supplementary cementitious materials (SCMs) achieving the targeted $CO_2$ reduction ratio as well as the conventional requirements such as initial slump, air content, and 28-day compressive strength of concrete. To evaluate the effect of SCM level on the $CO_2$ emission and compressive strength of concrete, a total of 12537 data sets were compiled from the available literature and ready-mixed concrete plants. The amount of $CO_2$ emission of concrete was assessed under the system boundary from cradle to concrete production stage at a ready-mixed concrete plant. Based on regression analysis using the established database, simple equations were proposed to determine the mixture proportions of concrete such as the type and level of SCMs, water-to-binder ratio, and fine aggregate-to-total aggregate ratio. Furthermore, the $CO_2$ emissions for a given concrete mixture can be straightforwardly calculated using the proposed equations. Overall, the developed mixture-proportioning procedure is practically useful for determining the initial mixture proportions of low-$CO_2$ concrete in the ready-mixed concrete field.

A Study on Chloride Threshold Level of Blended Cement Mortar Using Polarization Resistance Method (분극저항 측정기법을 이용한 혼합 시멘트 모르타르의 임계 염화물 농도에 대한 연구)

  • Song, Ha-Won;Lee, Chang-Hong;Lee, Kewn-Chu;Ann, Ki-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.245-253
    • /
    • 2009
  • The importance of chloride ions in the corrosion of steel in concrete has led to the concept for chloride threshold level (CTL). The CTL can be defined as the content of chlorides at the steel depth that is necessary to sustain local passive film breakdown and hence initiate the corrosion process. Despite the importance of the CTL, due to the uncertainty determining the actual limits in various environments for chloride-induced corrosion, conservative values such as 0.4% by weight of cement or 1.2 kg in 1 $m^3$ concrete have been used in predicting the corrosion-free service life of reinforced concrete structures. The paper studies the CTL for blended cement concrete by comparing the resistance of cementitious binder to the onset of chloride-induced corrosion of steel. Mortar specimens were cast with centrally located steel rebar of 10 mm in diameter using cementitious mortars with ordinary Portland cement (OPC) and mixed mortars replaced with 30% pulverized fuel ash (PFA), 60% ground granulated blast furnace slag (GGBS) and 10% silica fume (SF), respectively, at 0.4 of a free W/B ratio. Chlorides were admixed in mixing water ranging 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0, 2.5 and 3.0% by weight of binder(Based on $C1^-$). Specimens were curd 28 days at the room temperature, wrapped in polyethylene film to avoid leaching out of chloride and hydroxyl ions. Then the corrosion rate was measured using the polarization resistance method and the order of CTL for binder was determined. Thus, CTL of OPC, 60%GGBS, 30%PFA and 10%SF were determined by 1.6%, 0.45%, 0.8% and 2.15%, respectively.