• 제목/요약/키워드: cement-based materials

검색결과 579건 처리시간 0.026초

알루미노 실리케이트계 지오폴리머의 압축강도에 미치는 알카리 활성화제의 영향 (Influence of Alkaline-activator Content on the Compressive Strength of Aluminosilicate-based Geopolymer)

  • 김진태;서동석;김갑중;이종국
    • 한국세라믹학회지
    • /
    • 제47권3호
    • /
    • pp.216-222
    • /
    • 2010
  • Portland cement has been restricted in applications to ecological area because of its environmental harmfulness and the $CO_2$ emission during a production process. Geopolymer materials attract some attention as an inorganic binder due to their superior mechanical and eco-friendly properties. In this study, geopolymer-based cement was prepared by using aluminosilicate minerals (flyash, meta-kaolin) with alkaline-activators and its compressive strength with concentration of alkaline-activators was investigated. Aluminosilicate-based geopolymers were obtained by mixing aluminosilicate minerals, alkaline solution (NaOH or KOH with different concentration) and water-glass under the vigorous stirring for 20 min. Compressive strength after curing at $30^{\circ}C$ for 3 days increased with the concentration of alkaline-activator due to the enhanced polymerization of the aluminosilicate materials and dense microstructure. Aluminosilicate-based geopolymer cement using KOH as an alkaline-activator showed high compressive strength compared with NaOH activator. In addition, geopolymer cement using fly-ash as a raw material showed higher compressive strength than that of meta-kaolin.

An adaptive approach for the chloride diffusivity of cement-based materials

  • Tran, Bao-Viet;Pham, Duc-Chinh;Loc, Mai-Dinh;Le, Minh-Cuong
    • Computers and Concrete
    • /
    • 제23권2호
    • /
    • pp.145-153
    • /
    • 2019
  • Adaptive schemes are constructed in this paper for modeling the effective chloride diffusion coefficient of cement-based materials (paste and concrete). Based on the polarization approximations for the effective conductivity of isotropic multicomponent materials, we develop some fitting procedures to include more information about the materials, to improve the accuracy of the scheme. The variable reference parameter of the approximation involves a few free scalars, which are determined through the available numerical or experimental values of the macroscopic chloride diffusion coefficient of cement paste or concrete at some volume proportions of the component materials. The various factors that affect the chloride diffusivity of cement-based material (porous material structure, uncertainty of value of the chloride diffusion coefficient in water-saturated pore spaces, etc.) may be accounted to make the predictions more accurate. Illustrations of applications are provided in a number of examples to show the usefulness of the approach.

ECC 재료보강 두께에 따른 휨 부재의 휨 거동에 관한 실험적 연구 (Experimental Study of Flexural Behavior in Flexural Members Based on Repair Thickness of ECC)

  • 경민수;김동완;배병원;전경숙;임윤묵;김장호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.192-195
    • /
    • 2004
  • Recently, the development of construction materials is rapidly advancing. Especially, the rate of development of cement based construction materials is much quicker than steel or composite materials. In order to optimize the ductility and strength of cement based materials, Micro-mechanics based fiber concrete called Engineered Cement Composite (ECC) is developed and studied extensively by many researchers in the field. Due to ECC's remarkable flexural strain and strength capacities, many leading nation (i.e., US, Japan, and European countries) are currently using ECC in actual constructions. In this study, ECC with internationally competitive material capacities is manufactured using domestic materials. Then, unreinforced concrete beams are repaired using ECC with $10\%,\;20\%,\;30\%$ of concrete specimen height Using 4 point bending test, the flexural strength of repaired flexural members are determined. The results show that ECC manufactured with domestic materials can be effectively used for repairing materials.

  • PDF

그래핀 나노리본 보강 시멘트 복합체의 기계적 전기적 특성 분석 (Investigation of the mechanical and electrical properties of graphene nanoribbons-reinforced cementitious composites)

  • 리패기;유준성;배성철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 봄 학술논문 발표대회
    • /
    • pp.184-185
    • /
    • 2022
  • This study researched the effect of graphene nanoribbons (0.05 wt%) on cement-based materials' mechanical and electrical properties. The results were compared with the ordinary Portland cement (OPC) paste and OPC paste with the same content of carbon nanotubes. The experiment results showed that after curing for 28 days, the compressive and splitting tensile strength of the sample with graphene nanoribbons were increased by 17.8% and 6.6% compared to OPC paste, and its reinforced effect for cement-based materials was superior to carbon nanotubes. Besides, due to the excellent electrical properties of graphene nanoribbons, the sample reinforced by graphene nanoribbons had a lower electrical resistivity (135.5 Ω·m) than OPC paste (418.5 Ω·m) and paste with carbon nanotubes (175.5 Ω·m). This proved the promising application of graphene nanoribbons on cement-based materials.

  • PDF

Printing performance of 3D printing cement-based materials containing steel slag

  • Zhu, Lingli;Yang, Zhang;Zhao, Yu;Wu, Xikai;Guan, Xuemao
    • Advances in concrete construction
    • /
    • 제13권4호
    • /
    • pp.281-289
    • /
    • 2022
  • 3D printing cement-based materials (3DPCBM) is an innovative rapid prototyping technology for construction materials. This study is tested on the rheological behavior, printability and buildability of steel slag (SS) content based on the extrusion system of 3D printing. 0, 8 wt%, 16 wt%, 24 wt%, 32 wt% and 40 wt% SS was replaced cement, The test results revealed that the addition of SS would increase the fluidity of the printed paste, prolong the open time and setting time, reduce the plastic viscosity, dynamic yield stress and thixotropy, and is beneficial to improve the pumping and extrudability of 3DPCBM. With the increase of SS content, the static yield stress developed slowly with time which indicated that SS is harmful to the buildability of printing paste. The content of SS in 3DPCBM can reach up to 40% at most under the condition of satisfying rheological property and buildability, it provides a reference for the subsequent introduction of SS and other industrial solid waste into 3DPCBM by explored the influence law of SS on the rheological properties of 3DPCBM.

Investigation of Setting Process of Cementitious Materials Using Electromechanical Impedance of Embedded Piezoelectric Patch

  • Lee, Chang Joon;Lee, Jun Cheol;Shin, Sung Woo;Kim, Wha Jung
    • 한국건축시공학회지
    • /
    • 제12권6호
    • /
    • pp.607-614
    • /
    • 2012
  • In this study, the evolution of the electro-mechanical impedance (EMI) of a piezoelectric (PZT) patch embedded in fresh cement paste was investigated to discuss the possibility of monitoring the setting process of cement-based materials using an EMI sensing technique. A tailored thin square PZT patch was embedded in cement paste before casting, and EMI signatures of the embedded patch were continuously measured from casting up to 12 hours. A standard penetration resistance test was performed to compare and correlate the evolution of EMI during the setting process. The results showed that EMI responses differ according to the age of the cement paste, and that the behavior of the EMI resonance peak has a clear correlation with the penetration resistance of the cement paste. Based on the results, it is concluded that an EMI sensing technique using embedded PZT patch can be effectively applied to monitor the setting process of cement-based materials.

건물 외장재 적용을 위한 3D 프린팅 시멘트 베이스 결합재 개발 (Development of 3D Printing Cement Based Composite Materials Applying for Exterior Finishing Material)

  • 신현욱;송훈
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2018년도 춘계 학술논문 발표대회
    • /
    • pp.83-84
    • /
    • 2018
  • 3D printing technology can be applied to various industries, and is trapped by major technologies that change existing manufacturing processes. 3D printing materials must satisfy designability, economy and productivity, and building materials are required to have strength and economy secured technology. 3D printing technology of construction field can be divided into structural materials and internal and external materials, and is mainly done by extruding and adapting. Particularly when it is applied as an exterior materials, it is mainly applied to an unstructured exterior materials and high accuracy is required. The exterior materials can be used as a cement composite materials, it is suitable also for a lamination type, and the role of a cement base bonding material is important. In this research, we developed a cementitious base binder applicable as a 3D printing exterior materials, confirmed density and strength characteristics for application as an exterior materials, a flame retardancy test for improving the fire resistance of buildings and confirmed its possibility.

  • PDF

Modeling of damage in cement paste subject to external sulfate attack

  • Xiong, Chuansheng;Jiang, Linhua;Zhang, Yan;Chu, Hongqiang
    • Computers and Concrete
    • /
    • 제16권6호
    • /
    • pp.847-864
    • /
    • 2015
  • This study aimed to develop models of sulfate diffusion and ettringite content profile in cement paste for the predication of the damage behavior in cement paste subject to external sulfate. In the models, multiphase reaction equilibrium between ions in pore solution and solid calcium aluminates phases and the microstructure changes in different positions of cement paste were taken into account. The distributions of expansive volume strain and expansion stress in cement paste were calculated based on the ettringite content profile model. In addition, more sulfate diffusion tests and SEM analyses were determined to verify the reliability and veracity of the models. As the results shown, there was a good correlation between the numerical simulation results and experimental evidences. The results indicated that the water to cement ratio (w/c) had a significant influence on the diffusion of sulfate ions, ettringite concentration profile and expansion properties in cement paste specimens. The cracking points caused by ettringite growth in cement paste specimens were predicted through numerical methods. According to the simulation results, the fracture of cement paste would be accelerated when the specimens were prepared with higher w/c or when they were exposed to sulfate solution with higher concentration.

Cracking of Fiber-Reinforced Self-Compacting Concrete due to Restrained Shrinkage

  • Kwon, Seung-Hee;Ferron, Raissa P.;Akkaya, Yilmaz;Shah, Surendra P.
    • International Journal of Concrete Structures and Materials
    • /
    • 제1권1호
    • /
    • pp.3-9
    • /
    • 2007
  • Fiber-reinforced self-compacting concrete (FRSCC) is a new type of concrete mix that can mitigate two opposing weaknesses: poor workability in fiber-reinforced concrete and cracking resistance in plain SCC concrete. This study focused on early-age cracking of FRSCC due to restrained drying shrinkage, one of the most common causes of cracking. In order to investigate the effect of fiber on shrinkage cracking of FRSCC, ring shrinkage tests were performed for polypropylene and steel fiber-reinforced SCC. In addition, finite element analyses for those specimens were carried out considering drying shrinkage based on moisture diffusion, creep, cracking resistance of concrete, and the effect of fiber. The analysis results were verified via a comparison between the measured and calculated crack width. From the test and analysis results, the effectiveness of fiber with respect to reducing cracking was confirmed and some salient features on the shrinkage cracking of FRSCC were obtained.

시멘트기반 배터리 개발을 위한 Carbon Black 및 MWCNT 혼입 시멘트 복합체의 전기적 특성 분석 (The Electrical Properties of Cementitious Composites with Carbon Black and MWCNT for the Development of Cement-Based Battery)

  • 이주하
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2018년도 춘계 학술논문 발표대회
    • /
    • pp.212-213
    • /
    • 2018
  • The cementitious composites have been developed to satisfy various demands of the construction market. The conductive concrete, which is a carbon-based cementitious composite, was used for the deicing or the detecting the internal crack. The cement-based battery is a technology that applies the basic concept of the alkaline battery to these conductive concretes. The cementitious composites could have a function as batteries, through a mixing of anode and cathode, which were consist of the zinc and manganese dioxide powder. The carbon-based materials, which have a significant effect on electrical properties, could be considered as the main variable in cement-based batteries. Therefore, in this study, the effects of carbon-based materials were investigated. Two types of materials, including the Carbon black and Multi-walled carbon nanotube(MWCNT), were considered as the main variables. From the experiment results, the electrical characteristics such as resistance, voltage, and current were compared according to the age.

  • PDF