• Title/Summary/Keyword: cement-based grout

Search Result 50, Processing Time 0.022 seconds

A Study on the Properties of Grout Materials Based on Cement Type (시멘트계 주입재의 주입특성에 관한 연구)

  • 천병식;최중근
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.229-236
    • /
    • 2002
  • In this study, the characteristics of chemical grouting, such as solidification, penetrability, were analyzed experimentally by grain size of grout materials and permeability, relative density of the ground. For evaluating applicability of grout material, solidification tests and permeability tests were peformed. From the results of the tests, effective solidification ratio and penetrability ratio of Micro Cement were 75% and 86% respectively when ground permeability was in the range of 10$^{-4}$ to 10$^{-2}$cm/sec. On the other hand, effective solidification ratio and penetrability ratio of Ordinary Portland Cement (OPC) were both lower than 50%. When penetrability of grout material is needed for improvement of dam foundation and soft ground, application of Micro Cement is much superior to that of the other materials. The results of the grouting tests in the hydrodynamic ground show that the solidification effect of long gel-time grout material is excellent as injection pressure increases when groundwater velocity is relatively low. But when groundwater velocity is relatively high, the solidifcation effect of long gel-time grout material is very poor because most grout materials are outflowed.

Expansion ratio estimation of expandable foam grout using unit weight

  • WooJin Han;Jong-Sub Lee;Thomas H.-K. Kang;Jongchan Kim
    • Computers and Concrete
    • /
    • v.33 no.4
    • /
    • pp.471-479
    • /
    • 2024
  • In urban areas, appropriate backfilling design is necessary to prevent surface subsidence and subsurface cavities after excavation. Expandable foam grout (EFG), a mixture of cement, water, and an admixture, can be used for cavity filling because of its high flowability and volume expansion. EFG volume expansion induces a porous structure that can be quantified by the entrapped air content. This study observed the unit weight variations in the EFG before and after expansion depending on the various admixture-cement and water-cement ratios. Subsequently, the air content before and after expansion and the gravimetric expansion ratios were estimated from the measured unit weights. The air content before expansion linearly increased with an increase in the admixture-cement ratio, resulting in a decrease in the unit weight. The air content after the expansion and the expansion ratio increased nonlinearly, and the curves stabilized at a relatively high admixture-cement ratio. In particular, a reduced water-cement ratio limits the air content generation and expansion ratio, primarily because of the short setting time, even at a high admixture-cement ratio. Based on the results, the relationship between the maximum expansion ratio of EFG and the mixture ingredients (water-cement and admixture-cement ratios) was introduced.

Estimating UCS of cement-grouted sand using characteristics of sand and UCS of pure grout

  • Lee, Changho;Nam, Hongyeop;Lee, Woojin;Choo, Hyunwook;Ku, Taeseo
    • Geomechanics and Engineering
    • /
    • v.19 no.4
    • /
    • pp.343-352
    • /
    • 2019
  • For quality control and the economical design of grouted sand, the prior establishment of the unconfined compressive strength (UCS) estimating formula is very important. This study aims to develop an empirical UCS estimating formula for grouted sand based on the physical properties of sands and the UCS of cured pure grout. Four sands with varying particle sizes were grouted with both microfine cement and Ordinary Portland cement. Grouted specimens were prepared at three different relative densities and at three different water-to-cement ratios, and unconfined compression tests were performed. The results demonstrate that UCS of grouted sand can be expressed as the power function of the UCS of cured pure grout: $UCS_{grouted\;sand}/1MPa=A_{soil}{\cdot}(UCS_{pure}/1MPa)^N$. Because the exponent N strongly depends on the combination of pore area and pore size, N is expressed as the function of porosity (n) and specific surface ($S_a$). Additionally, because $S_a$ determines the area of the sand particle that cement particles can adsorb and n determines the number of cementation bondings between sand particles, $A_{soil}$ is also expressed as the function of n and $S_a$. Finally, the direct relationship between $A_{soil}$ and N is also investigated.

Observation of nano powders and fly ash usage effects on the fluidity features of grouts

  • Celik, Fatih;Yildiz, Oguzhan;Bozkir, Samet M.
    • Advances in nano research
    • /
    • v.13 no.1
    • /
    • pp.13-28
    • /
    • 2022
  • The pumpability of the grouts is significant issue in concept of the rheological and workability properties during penetrating to voids and cracks. To improve the fluidity features of the grout mixes, the usage of Colloidal Nano Particular Powders (CNPPs) with mineral additives such as fly ash (FA) can contribute. Therefore, the main purpose of this study can be explained as investigating the usage effects of four types of Colloidal Nano Particular Powders (n-TiO2, n-ZnO, n-Al2O3 and n-SiO2) as nano additives on the rheological, workability and bleeding properties of cement-based grout incorporated with fly as. Test results showed that the usage of FA in the grout samples positively contribute to increase on the fluidity of the grout samples as expected. The dilatant behavior was observed from the results for all mixes. Observing the effect of nano-sized additives in such cement-based grout mixtures with high fluidity has presented remarkable effects in this study.

Development and Characteristics of Thixotropic Grout based on Colloidal Silica (실리카 콜로이드를 이용한 가소성 그라우트의 개발 및 공학적 특성)

  • Ryu, Dong-Sung;Jeong, Gyeong-Hwan;Shin, Min-Sik;Kim, Dong-Hae;Lee, Jun-Seok;Jung, Du-Hwoe
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1283-1290
    • /
    • 2005
  • A thixotropic grout has been newly developed for the use of back-filling a tail void in the shield tunnel and filling up ground voids. The grout developed in the study is a mixture of colloidal silica, cement and some functional additives. Its engineering characteristics was investigated by measuring a viscosity and unconfined compressive strengths. The optimum mixing proportion for an effective thixotropic grout was proposed through several repeated laboratory tests. The various physical properties such as thixotropy, unconfined compressive strengths, and durability of the thixotropic grout and the gels produced from the grout were compared with those of the well-known waterglass grout such as L.W.. The thixotropic grout developed in the study exhibited an excellent performance for back-filling of tail voids, based on experimental results compared to the existing waterglass grout.

  • PDF

The Impermeable Effect for Bedrock Constructed by Grouting (기반암에서 그라우팅에 의한 차수효과)

  • Yea, Geuguwen
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.2
    • /
    • pp.51-59
    • /
    • 2009
  • This study is based on field data obtained from rock grouting such as RQD value, Unit cement grout volume, Lugeon value(Lu), and Maximum grout pressure in four different dam sites. The relationship were analyzed and compared as follow. The cut-off effect after rock grouting in dam-foundation which are mostly consist of metamorphic rock is better than that of Sedimentary rock. And the impermeable effect after consolidation grouting is more efficiency than the impermeable effect after curtain grouting. The unit cement grout volume are increased as RQD value is higher in rock mass. But there is no relationship between RQD value and Lugeon value. In the sedimentary rock, which is more permeable than metamorphic rock, Lugeon value (Lu) is a linear function (Lu=0.22Vc) of unit cement grout volume (Vc). Cut-off effect of curtain grouting is less influential at each near holes which are already grouted than that of consolidation grouting. And the behavior characteristics of Lugeon value vs. the unit cement grout volume as the order of installations are almost the same.

  • PDF

Properties of SPE-Based Cement Grout for Semi-Rigid Pavements (Sulfur Polymer Emulsion을 활용한 반강성 포장용 시멘트 주입재의 특성)

  • Lee, Byung-Jae;Lee, Jun;Hyun, Jung-Hwan;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.4
    • /
    • pp.57-65
    • /
    • 2013
  • The development of the oil refining industry has resulted in an annual 120 million tons of sulphur, which is a by-product of the desulphurization process. To exploit this abundance, the applications of sulphur must be expanded. as excellent durability of reuse of leftover sulphur which has high potential for utilization in construction materials, the study is actively in progress. Meanwhile, there has been active research on semi-rigid pavements that draw on the strengths and overcome the weaknesses of asphalt and concrete pavements. Acrylate is used to prevent cracking but involves a high cost, thus, an alternative material is required. As such, this study presents methods on the reuse of leftover sulphur and examines the engineering performance of grout containing sulfur polymer emulsion (SPE) for use in semi-rigid pavements. Our analysis shows that grout in which 30% of acrylate is replaced with SPE has superior properties in terms of time of flow and strength compared to regular grout. However, performance declined when more than 50% of acrylate was replaced by SPE, indicating that the optimum replacement level is 30%. Through SEM analysis, we found that grout with utra harding cement in this study at three hours had similar hydration properties to that of Type 1 Ordinary Portland Cement (OPC) at seven days, and maintained the properties regardless of grout containing SPE. OPC and grout with a replacement level of 30% displayed similar levels of chloride invasion resistance, whereas grout without SPE was far less resistant. Within the scope of this paper, the optimum replacement level of acrylate with SPE was found to be 30% in consideration of various properties such as time of flow, strength, and chloride invasion resistance.

Physiochemical Characteristics and its Applicable Potential of Blast Furnace Slag Grout Mixtures of Sodium Silicate and Calcium Hydroxide (규산소다 및 수산화칼슘을 적용한 고로슬래그 그라우트의 적용성 및 물리화학적 특성)

  • Kim, Joung-Souk;Yoon, Nam-Sik;Xin, Zhen-Hua;Moon, Jun-Ho;Park, Young-Bok;Kim, Young-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.200-207
    • /
    • 2019
  • Cement is one of the most commonly used materials in the construction and civil engineering industry. However, emissions of carbon dioxide generated during the production of cement have been linked to climate change and environment pollutants. In order to replace cement, many studies have been actively performed research to utilizing Blast Furnace Slag(BFS), which is a byproduct of the steel industry. This study aims to investigate the physiochemical properties of the BFS powder based grout to determine whether it can be used as an environment-friendly grout material. As a fine powder, BSF can be used instead of cement grout due to its potential hydraulic property. BSF has also been known for its ability to strengthen materials long-term and to densify the internal structure of concrete. In order to investigate the physicochemical properties of the BFS powder based grout as a grout material, in this study assessment tests were performed through a gel-time measurement, uniaxial compressive strength, and chemical resistance tests, and heavy-metal leaching test. Characteristics and advantages of the slag were studied by comparing slag and cement in various methods.

Development of Thixotropic Inorganic-Type Grout and Its Engineering Characteristics (무기계 가소성 그라우트의 개발 및 공학적 특성)

  • Jeong, Gyeong-Hwan;Shin, Min-Sik;Kim, Dong-Hae;Noh, Jin-Teck;Jung, Duh-Woe
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.725-733
    • /
    • 2008
  • A thixotropic grout has been developed for the use of filling a tail void in the shield TBM and as well as various ground voids. The grout developed in this study is a mixture of inorganic substance, cement and some functional additives. Its engineering characteristics was investigated by measuring a viscosity and unconfined compressive strengths. The optimum mix proportion for an effective thixotropic grout was proposed through several repeated laboratory tests. The various physical properties such as thixotropy, unconfined compressive strengths, and durability of the thixotropic grout and the gels produced from the grout were compared with those of the well-known waterglass-type grout such as L.W.. The thixotropic grout developed in the study exhibited an excellent performance for back-filling of tail voids in the shield TBM based on experimental results compared to the existing waterglass grout.

  • PDF

Engineering Properties of Composite Silicate Grout Materials (합성실리카 그라우트재의 공학적 특성)

  • 천병식;양형칠
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.163-172
    • /
    • 2003
  • The engineering properties of composite silicate grout materials that were developed recently were analyzed. In this laboratory tests, OPC (Ordinary Portland Cement) was mainly used as grout materials. Moreover, the properties of composite silica, silica sol and sodium silicate (No.3) acting as coagulating agent were analyzed and compared with each other. For the purpose of finding the engineering properties of composite silicate grout materials, various physical and chemical tests were performed : naked eye measurement, photographing by using SEM, uniaxial compression test and in-situ application test. A series of test results showed that the strength of composite silicate grout materials was about 3~6 times that of ordinary sodium silicate grout materials in 6~24hr. Especially, based on the evaluation of the application of JS-CGM grout to the construction fields, composite silicate grout would be very effective in reducing the coefficient of permeability.