• Title/Summary/Keyword: cement reinforcing carbon fiber

Search Result 14, Processing Time 0.019 seconds

Experimental Study on the Development and Evaluation of Lt.Wt.& High Strength Composites Utilizing By-Products and Calcium Silicates for Construction Materials(1) (산업부산물 및 규산칼슘계 재료를 이용한 건재용 경량.고강도 복합체의 개발.평가에 관한 실험적 연구(기 1))

  • 박승범
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.4
    • /
    • pp.141-152
    • /
    • 1994
  • The results of an experimental study on the development and the evaluation of lightweight and high strength composites utilizing by-products and calcium silicates for construction materials are presented in this paper. The composites using early strength portland cement, by-Products( f1y ash, silica fume), silica powder, quick lime, gypsum, A1 powder and fibers(PAN-derived CF, alkali-resistance GF) were prepared using various mixing conditions. As the test results show, PAN-derived CF and alkali-resistance GF were suitable for rein-forcing fiber of the composites. And the mechanical properties,such as compressive tensile flexural strength, and toughness of Lt. Wt. fiber reinforced calcium silicates cement comp-osites were improved by increasing the fly ash and silica fume contents, and fiber contents, especially by increasing fiber contents the toughness of the composites were remarkably in-creased. Also, compressive tensile flexural strength,and toughness of the composites rein-forcing PAN-derived CF were higher than those of the composites reinforcing alkali-resistance GF..

Monitoring the failure mechanisms of a reinforced concrete beam strengthened by textile reinforced cement using acoustic emission and digital image correlation

  • Aggelis, Dimitrios G.;Verbruggen, Svetlana;Tsangouri, Eleni;Tysmans, Tine;Van Hemelrijck, Danny
    • Smart Structures and Systems
    • /
    • v.17 no.1
    • /
    • pp.91-105
    • /
    • 2016
  • One of the most commonly used techniques to strengthen steel reinforced concrete structures is the application of externally bonded patches in the form of carbon fiber reinforced polymers (CFRP) or recently, textile reinforced cements (TRC). These external patches undertake the tensile stress of bending constraining concrete cracking. Development of full-field inspection methodologies for fracture monitoring are important since the reinforcing layers are not transparent, hindering visual observation of the material condition underneath. In the present study acoustic emission (AE) and digital image correlation (DIC) are applied during four-point bending tests of large beams to follow the damage accumulation. AE helps to determine the onset of fracture as well as the different damage mechanisms through the registered shifts in AE rate, location of active sources and change in waveform parameters. The effect of wave propagation distance, which in large components and in-situ can well mask the original information as emitted by the fracture incidents is also discussed. Simultaneously, crucial information is supplied by DIC concerning the moments of stress release of the patches due to debonding, benchmarking the trends monitored by AE. From the point of view of mechanics, conclusions on the reinforcing contribution of the different repair methodologies are also drawn.

A Study on the Detoxification of Chrysotile and the use of High-density Extruded Cement Panel Reinforcement Fibers (백석면의 무해 섬유화 처리 방법과 고밀도 압출성형 패널 활용 연구)

  • Jang, Kyong-Pil;Kim, Tae-Hyoung;Song, Tae-Hyeob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.223-228
    • /
    • 2021
  • The final disposal method for asbestos building materials is to be landfilled at a designated waste landfill in accordance with the Waste Management Act. However, it is difficult to secure a domestic designated waste landfill site to landfill the entire amount of asbestos waste, which is expected to emit more than 400,000 ton/year by 2044. In this study, a detoxification treatment was performed on a ceiling tex with a density of 1.0 to 1.2g/cm3 containing 3 to 7% of chrysotile, and it was used as a reinforcing fiber for extruded panels. It was confirmed that asbestos components were detoxified through the reaction process using 30% oxalic acid and carbon dioxide, and it was recognized that these detoxifying properties were maintained even after extrusion molding. However, it was found that milling to a fiber size of less than 1mm for complete detoxification of asbestos resulted in a decrease in reinforcing performance. Therefore, in the case of using detoxified asbestos fibers in the extrusion molding process, it is considered desirable to add fibers with a length of 5mm or more to improve the reinforcing performance.

Injection Characteristics Evaluation of Conductive Grout Material According to Carbon Fiber Mixing Ratio (탄소섬유 배합비에 따른 전도성 그라우트 재료의 주입특성평가)

  • Hyojun Choi;Wanjei Cho;Hyungseok Heo;Teawan Bang;Chanyoung Yune
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.1
    • /
    • pp.15-23
    • /
    • 2023
  • The grouting method is a method of construction for the purpose of waterproofing and reinforcing soft ground. When grout is injected into the ground, there are various types of penetration and diffusion of grout depending on the shape of the ground, the size of soil, the porosity, and the presence or absence of groundwater. the current situation. Therefore, in this study, to investigate the penetration performance of the grouting to conductive material, laboratory tests were performed on the addition of the conductive material. In the injection test, 0%, 3%, and 5% of the mixed water were added as conductive materials to the grout, and the original ground condition was composed of various types of ground composed of gravel and silica sand. Conductive grout is injected by pressure into the model ground using a dedicated injection device, and the injection time (t), pressure (p), flow rate (v) and injection amount (q) are measured, and the hardened body injected in the model ground is collected. Penetration performance was evaluated. In the results of the grout injection experiment, the amount of conductive material used and the grout injection rate showed an inverse relationship, and it was confirmed that the penetration pattern was changed according to the size of the soil particles in the model ground. The grout containing the conductive material has relatively good penetration into the ground and excellent strength and durability of the hardened body, so it was judged that it could be used as an additive for measuring the penetration range of the grout.