• 제목/요약/키워드: cement content

Search Result 1,193, Processing Time 0.03 seconds

Expansion ratio estimation of expandable foam grout using unit weight

  • WooJin Han;Jong-Sub Lee;Thomas H.-K. Kang;Jongchan Kim
    • Computers and Concrete
    • /
    • v.33 no.4
    • /
    • pp.471-479
    • /
    • 2024
  • In urban areas, appropriate backfilling design is necessary to prevent surface subsidence and subsurface cavities after excavation. Expandable foam grout (EFG), a mixture of cement, water, and an admixture, can be used for cavity filling because of its high flowability and volume expansion. EFG volume expansion induces a porous structure that can be quantified by the entrapped air content. This study observed the unit weight variations in the EFG before and after expansion depending on the various admixture-cement and water-cement ratios. Subsequently, the air content before and after expansion and the gravimetric expansion ratios were estimated from the measured unit weights. The air content before expansion linearly increased with an increase in the admixture-cement ratio, resulting in a decrease in the unit weight. The air content after the expansion and the expansion ratio increased nonlinearly, and the curves stabilized at a relatively high admixture-cement ratio. In particular, a reduced water-cement ratio limits the air content generation and expansion ratio, primarily because of the short setting time, even at a high admixture-cement ratio. Based on the results, the relationship between the maximum expansion ratio of EFG and the mixture ingredients (water-cement and admixture-cement ratios) was introduced.

A Study on the Evaluation of the Water-soluble Chloride Content and Free-chloride Content in Blast Furnace Slag Cement Pastes (고로 슬래그 시멘트 페이스트 내 자유염화물량과 물가용성 염화물량 평가에 관한 연구)

  • Jo, Young-Kug;So, Seung-Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.4
    • /
    • pp.95-101
    • /
    • 2004
  • The purpose of this paper is to compare free-chloride content with water-soluble chloride in blast furnace cement(BSC) paste. The content of free-chloride in cement paste measured by pore solution analysis and water-soluble chloride measured by ASTM. The result of this study are as follows: 1. The concentration of chloride ion in pore solution of BSC-solidified matrix is almost as low as 43-71% compared to that of OPC-solidified matrix containing the same chloride content in cement paste. 2. The binding capacity of specimens, OPC Pl-P5, are 93.5-77%, but the binding capacity of specimens, BSC Pl-P5 are 97.1-86.1%, which is to be as high as 2-9.1% compared to OPC containing the same chloride content. 3. In terms of water-soluble chloride content in BSC paste are 15-31.7 percent of chloride addition but free-chloride content in pore solution are 2.9-13.9 percent of chloride addition. The free-chloride content in pore solution is 19.3-43.8 percent lower for the water-soluble chloride content in cement paste.

Compressive Strength Characteristics of Cement Mixing Lightweight Soil For Recycling of Dredged Soil in Nakdong River Estuary (낙동강 하구역 준설토 재활용을 위한 시멘트 혼합경량토의 압축강도 특성 연구)

  • KIM YUN-TAE;KIM HONG-JOO;KWON YONG-KYU
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.1 s.68
    • /
    • pp.7-15
    • /
    • 2006
  • In this research, the behavior characteristics of cement mixing lightweight soil (CMLS) for recycling of dredged soil in the Nakdong River estuary are experimentally investigated. CMLS is composed of the dredged soil from Nakdong River estuary, cement, and air foam. For this purpose, uniaxial compression tests are carried out for artificially prepared specimens of CMLS, with various initial water contents, cement contents, and mixing ratio of dredged soils. The experimental results of CMLS indicated that the compressive strength is strongly influenced by the cement contents, rather than water contents and air foam. Compressive strength of CMLS increased with an increase in cement content, while it decreased with an increase in water content and air foam content. It was also found that the modulus of deformation E50 was in a range of 44 to 128 times greater than the value of uniaxial compressive strength, cured in 28 days.

Hydration and mechanical properties of Blended Cement added Bypass dust (By-pass Dust를 첨가한 혼합 시멘트의 수화 및 기계적 특성)

  • 성진욱;나종윤;김창은;이승헌;이봉한;김수룡;류한웅
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.33-39
    • /
    • 1999
  • This study was conducted to confirm the effect of bypass dust on the hydration and mechanical properties of the cement pastes and mortar obtained from ordinary Portland cement (OPC), OPC-slag and OPC-fly ash system. The rate of heat evolution is accelerated with the content of By-pass Dust(BD). total heat evolution increased because alkali-chlorides activated the hydration of blended cement. Compressive strength and bound water content show maximum value at 5wt% By-pass Dust(BD) on each curing time in ordinary Portland cement and slag blended cement. Ca(OH)2 content of Ordinary Portland Cement increased as the content of BD and curing time. In blended cement, the formation of Ca(OH)2 is active at early hydration stage. By pozzolanic reaction, the content of Ca(OH)2 is decreased as curing time goes by. According to the BD content stable chlorides complex of Friedel's salt (C3A·CaCl2·10H2O) is created. Due to the hydration activation effect of chlorides and alkali we observed Type II C-S-H, which developed into densest microstructure.

  • PDF

The Study on Portland Cement Stabilization on the Weathered Granite Soils (on the Durability) (화강암질 풍화토의 시멘트에 의한 안정처리에 관한 연구 (내구성을 중심으로))

  • 도덕현
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.22 no.3
    • /
    • pp.60-74
    • /
    • 1980
  • Soil-cement mixtures involve problems in it's durability in grain size distribution and mineral composition of the used soils as well as in cement content, compaction energy, molding water content, and curing. As an attempt to solve the problems associated with durability of weathered granite soil with cement treated was investigated by conducting tests such as unconfined compression test, it's moisture, immers, wet-dry and freeze-thaw curing, mesurement of loss of weight with wet-dry and freeze-thaw by KS F criteria and CBR test with moisture curing on the five soil samples different in weathering and mineral composition. The experimental results are summarized as follows; The unconfined compressive strength was higher in moisture curing rather than in the immers and wet-dry, while it was lowest in freeze-thaw. Decreasing ratio of unconfined compressive strength in soil-cement mixtures were lowest in optimum moisture content or in the dry side rather than optimum moisture content with freeze-thaw. The highly significant ceofficient was obtained between the cement content and loss of weight with freeze-thaw and wet-dry. It was possible to obtain the durability of soil-cement mixtures, as the materials of base for roads, containing above 4 % of cement content, above 3Okg/cm$_2$ of unconfined compressive trength with seven days moisture curing or 12 cycle of freeze-thaw after it, above 100% of relative unconfined compressive strength, 80% of index of resistance, below 14% of loss of weight with 12 cycle of wet-dry and above 1. 80g/cm$_2$ of dry density.

  • PDF

A Study on the Optimum Cement Content of High Strength Concrete (고강도 콘크리트의 적정 단위시멘트량 선정 방안)

  • Lee, Jang Hwa;Kim, Sung Wook;Lee, Jong Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.1
    • /
    • pp.173-179
    • /
    • 2003
  • Currently, in the mix design of high strength concrete, cement content depend on the target slump which is fixed with tests. However this cause high content cement use because it is based on the mix design of normal strength concrete. Also, comparatively high content cement might decrease the durability of the concrete. Therefore, in this study, we investigated proper cement content satisfying durability, workability, compressive strength, and reviewed use of admixtures, proper sand-aggregate ratio to the cement content. The results indicate that cement content ranging $370{\sim}550kg/m^3$ did not affect the compressive strength. The field workers should consider durability, workability as well as compressive strength for determining the optimal cement content in the mix design of the high strength concrete.

Effects of Some Construction Variables on the Hydraulic Conductivity of Soil-Cement in Low Permeable Applications (시공조건이 시멘트계 고화토의 투수계수에 미치는 영향)

  • 정문경;김강석;우제윤
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.427-434
    • /
    • 2000
  • Hydraulic conductivity of soil-cement was measured as a function of some selected construction variables that are often encountered in practice. They are initial (or compaction) water content, delayed compaction after mixing, and repeated freezing and thawing. Sandy and clayey soils were used. The hardening agent used was a cement based soil stabilizer consisting of 80% of ordinary Portland cement and 20% of a combination of supplementary materials. Hydraulic conductivity of soil-cement with varying initial water content was, in trend, similar to that of compacted clay. Hydraulic conductivity of soil-cement decreased with increasing initial water content and reached its minimum when compacted wet of optimum water content. Pore size distributions of soil cement at different initial water contents were analyzed using mercury intrusion porosimetry. The analysis showed that dryer condition led to the formation of larger pores with lesser total pore volume; smaller pores with larger total pore volume at wetter condition. Hydraulic conductivity of soil-cement increased by orders in magnitude when specimen underwent delayed compaction of longer than 4 hours after mixing and repeated freezing and thawing.

  • PDF

Effect of Cement Alkali Content on ASR Expansibility by the Test Method of ASTM C 1260 (ASTM C 1260 실험방법에 의한 시멘트 알칼리 함량이 ASR 팽창성에 미치는 영향)

  • Jeon, Sung Il;Son, Hyeon Jang;Kwon, Soo Ahn;Yun, Kyung Ku
    • International Journal of Highway Engineering
    • /
    • v.14 no.6
    • /
    • pp.37-43
    • /
    • 2012
  • PURPOSES : This study is to evaluate the feasibility of setting the standard of cement alkali content by using ASTM C 1260(accelerated mortar bar test) METHODS : This study analyzes the ASR(alkali silica reaction) expansion of cement mortar bar based on the changes in the aggregate type(fine, coarse), cement type(ordinary, low alkali), and replacement contents of fly ash. ASR tests were conducted according to ASTM C 1260. RESULTS : In this test results, There is no big difference in the ASR expansion between ordinary cement and low alkali cement. From this test results, it was found that the variation of cement alkali content did not have a effect on ASR expansion because mortar bar was placed in a container with sufficient alkali aqueous solution at high temperature during the test process of ASTM C 1260. CONCLUSIONS : It is evidently clear that the alkali content of cement have a effect on ASR. But ASTM C 1260 is difficult to assess this effect.

A Study on the Effects of Molding Pressure on the Compressive Strength and Durability of Soil-Cement Mixture (성형압력이 Soil-Cement의 강도 및 내구성에 미치는 영향에 관한 연구)

  • 서원명;고재군
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.20 no.1
    • /
    • pp.4575-4591
    • /
    • 1978
  • In order to investigate the effects of grain size distribution, cement content, and molding pressure on the strength and durability of soil-cement mixtures, a laboratory test of soil cement mixtures was performed at four levels of cement content, five levels of molding pressure, and four levels of normal curing periods. The results are summarized as follows: 1. Optimum moisture contents in loam soil and maximum dry density in sand soil increased with the increase of cement content, but in others, both optimum moisture contents and maximum dry density were changed ununiformly. 2. When the specimens were molded with molding pressure, 50kg/$\textrm{cm}^2$, strength of soil cement mixture with cement content, 2 and 4 per cent, was lower than the strength of soil cement mixture without cement content by more than 40 to 50 per cent. 3. The strength of soil-cement molded with molding pressure, 100kg/$\textrm{cm}^2$, was higher than the strength of soil-cement molded with M.D.D. obtained from standard compaction test more than 40 per cent in sand loam cement and 50 per cent in loamy cement. 4. There was highly significant positive correlation among molding pressure, cement content and unconfined compressive strentgh and so the following multiple regression equations were obtained. Loam: fc=1.9693C+0.197P-0.84 Sandy loam: fc=2.9065C+0.235P-0.77 5. When the specimens were molded with molding pressure, 20 to 100kg/$\textrm{cm}^2$, the regression equation between the 28-day and 7-day strenght was obtained as follows. Loam : q28=1.1050q7+7.59(r=0.9147) Sandy loam : q28=1.3905q7+3.17 (r=0.9801) 6. At the cement contents of above 50 per cent, the weight losses by freeeze-thaw test were negligible. At the cement content of below 8 per cent the weight losses were singnificantly high under low molding pressure and remarkably decreased with the increase of molding pressure up to 80kg/$\textrm{cm}^2$. 7. Resistance to damage from water and to absorption of water were not improved by molding pressure alone, but when the soil was mixtured with cement above 6 per cent, damage seldoms occurred and absorbed less than 5 per cent of water. 8. There was highly significant inverse-corelationship between the compressive strength of soil cement mixtures and their freeze-thaw loss as well as water absorption. By the regression equation methods, the relationships between them were expessed as followed fc=-7.3206Wa+115.6(r=0.9871) log fc=-0.0174L+1.59(r=0.7709) where fc=unconfined compressive stregth after 28-days curing. kg/$\textrm{cm}^2$ Wa=water absorption, % L : freeze-thaw loss rate, %

  • PDF

Characteristic evaluation of settlement and stiffness of cement-treated soils with the change of fines content under cyclic dynamic loading (세립분 함량 변화에 따른 반복 동하중을 받는 시멘트 혼합토의 침하 및 강성 특성평가)

  • Kim, Dae Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.23-29
    • /
    • 2020
  • The soil structures settle down continuously under cyclic dynamic loading after opening railway lines. This study examined the characteristics of the settlement and stiffness of cement-treated soils with the change in the content of fines under cyclic dynamic loading. Eighteen cases of the test were carried out with the changes in the fines content of soils, cement content, and curing days. Based on the test results, cement-treated soils containing more than 3% of cement could decrease settlement sufficiently even with a high portion of fines under cyclic dynamic loading. In addition, the elastic and plastic settlements could be reduced using 3 to 4% cement to the level of 1/4 and 1/6, respectively. In the viewpoint of stiffness, the resilient modulus of cement-treated soils increases with increasing cement content. Using more than 3% of cement, the 80MPa compaction stiffness standard for the upper subgrade of railways was satisfied, even with 40% of fines content of soils.