• Title/Summary/Keyword: cement, pore

Search Result 298, Processing Time 0.027 seconds

Behavior of cement-based permeation grouting in cohesionless soil considering clogging phenomena (폐색효과를 고려한 사질토의 시멘트 침투 그라우팅 거동 특성)

  • Seo, Jong-Woo;Lee, In-Mo;Kim, Byung-Kyu;Kwon, Young-Sam
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.485-500
    • /
    • 2018
  • The behavior of cement-based permeation grouting is divided into three different groups depending on the grain size distribution of the soils: (1) zone of cement-based permeation grouting not feasible; (2) zone of cement-based permeation grouting feasible; and (3) zone in which an accelerating agent should be added to limit the penetration depth. In the cement-based permeation grouting feasible zone, the concept of a representative pore radius was proposed. The ratios of the representative pore radius to the mean pore radius were obtained by performing laboratory test and comparing with clogging theory; these values were in the range of 1.07 and 1.35 depending on the grain size distribution of the soils. In addition, a functional relationship between the lumped parameter (${\theta}$), the representative pore radius and the w/c ratio were derived by comparing and matching experimental results with predictions from theory. In the zone in which the accelerating agent should be added, the controlling process of gel time to limit the penetration depth was experimentally verified. The test results matched well with those obtained from theory utilizing the developed grout penetration program on condition that the viscosity increasing tendency of grout suspension with time is properly taken into account.

Properties of Polymer-Modified Mortars Using Methylmethacrylate-Butyl Acrylate Latexes with Various Monomer Ratios (모노머비를 변화한 MMA/BA 합성 라텍스 혼입 폴리머 시멘트 모르타르의 성질)

  • Hyung, Won-Gil;Kim, Wan-Ki;Choi, Nak-Woon;Soh, Yang-Seob
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.273-279
    • /
    • 2003
  • The purpose of this study is to clarify the effect of the monomer ratio on properties of the polymer-modified mortars using methylmethacrylate-butyl acrylate(MMA/BA) latexes, and to obtain basic data necessary to develop appropriate latexes for cement modifiers. From the test results, we knew that the pore volume of polymer-modified mortars using MMA/BA latexes at bound MMA contents of 60 and 70 percent is 7.5∼75nm and the fine pore volume is increased with an increase in the polymer-cement ratio. The total pore volume of polymer-modified mortars using MMA/BA latexes is linearly reduced with an increase in the bound MMA content and increased in the polymer-cement ratio. In general, the superior compressive strength of polymer-modified mortars using MMA/BA latexes is obtained at a bound MMA content of 70 percent and a polymer-cement ratio of 15%. And, the water absorption and chloride ion penetration depth are greatly affected by the polymer-cement ratio rather than the bound MMA content. The important factors affecting the properties of polymer-modified mortars using MMA/BA latexes polymerized with various monomer ratios are the variations of the pore size distribution with changing bound MMA content and the polymer-cement ratio.

A Study on the pH Reduction of Cement Concrete with Various Mixing Conditions (시멘트 콘크리트의 배합조건에 따른 pH 저감에 관한 연구)

  • Jo, Young-Kug
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.4
    • /
    • pp.79-85
    • /
    • 2008
  • The purpose of this study is to evaluate the mix design of pH reducing cement concrete which can be used for environment-friendly concrete. Cement pastes and concretes are prepared with water-binder ratios and various admixtures such as blast-furnace slag, fly ash and recycled cement, and tested for compressive strength and pH. pH is measured through pore solution expressed from hydrated cement paste by special apparatus. From the test results, regardless of water-binder ratio, The pH of expressed pore solution from hydrated cement paste which is made of ordinary portland cement with blast-furnace slag, fly ash is decreased with increasing of admixtures content, and compressive strength is also slightly improved. The compressive strength of cement paste made of recycled cement which is burnt at $1000^{\circ}C$, for 2 hours is considerably increased compared with that of none-burnt recycled cement due to restoration of hydraulic property, but pH is a little higher. Porous concrete with ordinary portland cement has high pH in the range of 12.22 to 12.59, however, that is reduced to the range of 8.95 to 10.39 by carbonation at the surface of porous concrete. The pH reduction of porous concrete is possible by various admixture addition, however their degrees are very slight. Therefore, to reduce the pH considerably, carbonation method of porous concrete is better in pH reduction methods for plant survival condition of pH of 9.0 or less. In this study, it is apparent that pH for the environment-friendly porous concrete products used in the construction field can be suppressed by this carbonation method and various admixtures addition.

Resistance of Cementitious Binders to Chloride Induced Corrosion of Embedded Steel by Electrochemical and Microstructural Studies

  • Song, Ha-Won;Ann, Ki-Yong;Kim, Tae-Sang
    • Corrosion Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.74-80
    • /
    • 2009
  • The high alkaline property in the concrete pore solution protects the embedded steel in concrete from corrosion due to aggressive ions attack. However, a continuous supply of those ions, in particular, chlorides altogether with a pH fall in electrochemical reaction on the steel surface eventually depassivate the steel to corrode. To mitigate chloride-induced corrosion in concrete structures, finely grained mineral admixtures, for example, pulverized fuel ash (PFA), ground granulated blast furnace slag (GGBS) and silica fume (SF) have been often advised to replace ordinary Portland cement (OPC) partially as binder. A consistent assessment of those partial replacements has been rarely performed with respect to the resistance of each binder to corrosion, although the studies for each binder were extensively looked into in a way of measuring the corrosion rate, influence of microstructure or chemistry of chlorides ions with cement hydrations. The paper studies the behavior of steel corrosion, chloride transport, pore structure and buffering capacity of those cementitious binders. The corrosion rate of steel in mortars of OPC, 30% PFA, 60% GGBS and 10% SF respectively, with chloride in cast ranging from 0.0 to 3.0% by weight of binder was measured at 7, 28 and 150 days to determine the chloride threshold level and the rate of corrosion propagation, using the anodic polarization technique. Mercury intrusion porosimetry was also applied to cement pastes of each binder at 7 and 28 days to ensure the development of pore structure. Finally, the release rate of bound chlorides (i.e. buffering capacity) was measured at 150 days. The chloride threshold level was determined assuming that the corrosion rate is beyond 1-2 mA/$m^3$ at corrosion and the order of the level was OPC > 10% SF > 60% GGBS > 30% PFA. Mercury intrusion porosimetry showed that 10% SF paste produced the most dense pore structure, followed by 60% GGBS, 30% PFA and OPC pastes, respectively. It was found that OPC itself is beneficial in resisting to corrosion initiation, but use of pozzolanic materials as binders shows more resistance to chloride transport into concrete, thus delay the onset of corrosion.

Evaluation of Apparent Chloride Diffusivity of Types of Concretes (콘크리트 종류별 겉보기 염소이온 확산특성 평가)

  • 문한영;김홍삼;최두선;이승훈;손유신
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.74-77
    • /
    • 2003
  • This paper investigated the apparent chloride diffusivity of various concretes. Ten mixtures of concrete were initially prepared and tested to estimate diffusion property. The penetration depth and concentration of chloride ion were examined at the same water-binder ration. The binders were composed of normal portland cement, fly ash, ground granulated blast-furnace slag, and silica fume. From the results, it was concluded that using the mineral admixtures had a filling effect on the pore structure of cements matrix due to those pozzoanic reaction with the hydrates of cement, which increases the tortuosity of pore and makes large pore finer. And diffusivity of chloride is following: NPC100 > F10N90 > F30N70 > F20N80 > F20S05 > G30N70 > F10S05 > G30S05 > G30F15 > G50N50.

  • PDF

Evaluation of different methods to remove pore water in an early age cement paste for the degree of hydration measurement and pore structure analysis. (공극수 추출방법에 따른 시멘트 페이스트의 수화도와 공극 특성 분석)

  • Ahn, Yu-Ri;Lu, Yang;Kim, Baek-Joong;Yi, Chong-Ku;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.245-246
    • /
    • 2012
  • The analysis of microstructure is essential to understand the material behavior such as shrinkage, strength, and permeability. In this study, three different easy-to-apply specimen preparation methods for the mercury intrusion analysis were chosen, and their effectiveness in removing pore water and thus impeding further hydration was evaluated. As a result, it was found that the direct freeze-drying was the most effective among the three methods.

  • PDF

Cement/PVDF hollow-fiber hybrid basement membrane: Preparation, microstructure, and separation application

  • Yabin, Zhang;Xiongfei, Du;Taotao, Zhao
    • Membrane and Water Treatment
    • /
    • v.13 no.6
    • /
    • pp.291-301
    • /
    • 2022
  • In this study, cement/PVDF hollow-fiber hybrid membranes were prepared via a mixed process of diffusion-induced phase separation and hydration. The presence of X-ray diffraction peaks of Ca(OH)2, an AFt phase, an AFm phase, and C-S-H phase confirmed the hydration reaction. Good hydrophilicity was obtained. The cross-sectional and surface morphologies of the hybrid membranes showed that an asymmetric pore structure was formed. Hydration products comprising parallel plates of Ca(OH)2, fibrous ettringite AFt, and granulated particles AFm were obtained gradually. For the hybrid membranes cured for different time, the pore-size distribution was similar but the porosity decreased because of blocking of the hydration products. In addition, the water flux decreased with hydration time, and carbon retention was 90% after 5 h of rejection treatment. Almost all the Zn2+ ions were adsorbed by the hybrid membrane. The above results proved that the obtained membrane could be alternative as basement membrane for separation application.

Development of Multi-Components Model of Cement Hydration

  • WangXiaoYong
    • Cement Symposium
    • /
    • s.34
    • /
    • pp.129-137
    • /
    • 2007
  • This paper presents a numerical model which can predict degree of cement mineral component, such as $C_3S$, $C_2S$, $C_3A$, $C_4AF$ and microstructure of hydrating cement as a function of water to cement ratio, cement particle size distribution, cement mineral components and temperature. In this model cement particles are parked randomly in cell space and hydration process is described using a multi-component intergrated kinetic model. The simulation result of degree of hydration of cement mineral component agrees well with experiment result. The content of cement hydration product, such as CSH and CH can be obtained as an accompanied result during hydration process. By introducing of equal-area projection method, water withdrawl mechanism and contact area among cement particles can be considered in detail. By using proposed method, pore size distribution of hydrating cement is predicted.

  • PDF

Modeling of Mechanical Properties of Concrete Mixed with Expansive Additive

  • Choi, Hyeonggil;Noguchi, Takafumi
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.4
    • /
    • pp.391-399
    • /
    • 2015
  • This study modeled the compressive strength and elastic modulus of hardened cement that had been treated with an expansive additive to reduce shrinkage, in order to determine the mechanical properties of the material. In hardened cement paste with an expansive additive, hydrates are generated as a result of the hydration between the cement and expansive additive. These hydrates then fill up the pores in the hardened cement. Consequently, a dense, compact structure is formed through the contact between the particles of the expansive additive and the cement, which leads to the manifestation of the strength and elastic modulus. Hence, in this study, the compressive strength and elastic modulus were modeled based on the concept of the mutual contact area of the particles, taking into consideration the extent of the cohesion between particles and the structure formation by the particles. The compressive strength of the material was modeled by considering the relationship between the porosity and the distributional probability of the weakest points, i.e., points that could lead to fracture, in the continuum. The approach used for modeling the elastic modulus considered the pore structure between the particles, which are responsible for transmitting the tensile force, along with the state of compaction of the hydration products, as described by the coefficient of the effective radius. The results of an experimental verification of the model showed that the values predicted by the model correlated closely with the experimental values.

Strength Properties and Determination Method of Mix Proportion Factor of Latex Modified Concrete (라텍스개질 콘크리트의(LMC)의 강도특성 및 배합인자 결정방법)

  • Park, Sung-Ki;Won, Jong-Pil;Park, Chan-Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.5
    • /
    • pp.39-50
    • /
    • 2008
  • This study are decided the mix proportion method of latex modified concrete for agricultural concrete structures from the results of workability and strength test with mix proportion factor. For mix proportion factor, this study are selected the water-cement ratio, unit cement amount and latex content. Also, this study were performed the slump, compressive strength test and microstructure analysis using the scanning electron microscope(SEM). The strength and slump of LMC are dependent with unit cement amount, latex content, and water-cement ratio. Especially, the strength of LMC are not controlled by single mix proportion factor but effected by combined mix proportion factor. Microstructure investigation are showed the LMC are reduced the internal pore volume and enhanced the transition zone between cement paste and aggregate interface. This effect get by consist of latex films in the concrete. Also, this study were recommended the mix proportion method for LMC. These mix proportions method are estimated the mix design for satisfied the target performance which are applied the agricultural concrete structure.