• Title/Summary/Keyword: cellular-protective effect

Search Result 341, Processing Time 0.03 seconds

Effects of EGb 761 and Korean Red Ginseng on Melanogenesis in B16F10 Melanoma Cells and Protection Against UVB Irradiation in Murine Skin

  • Han, Seon-Kyu;Choi, Wook-Hee;Ann, Hyoung-Soo;Ahn, Ryoung-Me;Yi, Seh-Yoon
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.1
    • /
    • pp.85-91
    • /
    • 2008
  • These days there is a constant possibility of exposure to UV radiation which can cause abnormal production of melanin and result in skin disease such as hyperpigmentation and melanoma. Many materials were investigated for skin whitening and protection against UV radiation. In this study, we assessed the melanogenesis inhibitory activities of Korean Red Ginseng (KRG, Ginseng Radix Rubra) and Ginkgo (EGb 761 Ginkgo Biloba) in an attempt to develop a new skin whitening agent derived from natural products. B16F10 melanoma cells were treated for 48 hr with KRG and EGb 761. The inhibitory effect on melanogenesis was measured and related cytokines and proteins expression were also investigated by RT-PCR and Western blotting. In addition, we also assessed the effects of these substances on the skin of C57BL/6 mice. Cell growth, melanin content and tyrosinase activity were inhibited effectively in B16F10 melanoma cells treated with KRG and EGb 761. Moreover, tyrosinase mRNA expression was inhibited clearly and melanogenesis related proteins (MRPs) containing tyrosinase, TRP1 and TRP2 were also reduced by KRG and EGb761, while cytokines such as IL-$1{\beta}$ and IL-6 were induced. In the case of UV irradiated mice, we observed induction of cytokine mRNA levels and reduction of MRPs mRNA expression. In addition, a decrease in pigmentation from treatment with KRG and EGb 761 on the skin of mice was observed. These results indicate that KRG and EGb 761 inhibit melanogenesis in B16F10 cells and have display protective activities against UVB. Therefore, we suggest that KRG and EGb 761 are good candidates to be used as whitening agents and UVB protectors for the skin.

Kainic Acid-induced Neuronal Death is Attenuated by Aminoguanidine but Aggravated by L-NAME in Mouse Hippocampus

  • Byun, Jong-Seon;Lee, Sang-Hyun;Jeon, Seong-Ho;Kwon, Yong-Soo;Lee, Hee-Jae;Kim, Sung-Soo;Kim, Young-Myeong;Kim, Myong-Jo;Chun, Wan-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.4
    • /
    • pp.265-271
    • /
    • 2009
  • Nitric oxide (NO) has both neuroprotective and neurotoxic effects depending on its concentration and the experimental model. We tested the effects of NG-nitro-L-arginine methyl ester (L-NAME), a nonselective nitric oxide synthase (NOS) inhibitor, and aminoguanidine, a selective inducible NOS (iNOS) inhibitor, on kainic acid (KA)-induced seizures and hippocampal CA3 neuronal death. L-NAME (50 mg/kg, i.p.) and/or aminoguanidine (200 mg/kg, i.p.) were administered 1 h prior to the intracerebroventricular (i.c.v.) injection of KA. Pretreatment with L-NAME significantly increased KA-induced CA3 neuronal death, iNOS expression, and activation of microglia. However, pretreatment with aminoguanidine significantly suppressed both the KA-induced and L-NAME-aggravated hippocampal CA3 neuronal death with concomitant decreases in iNOS expression and microglial activation. The protective effect of aminoguanidine was maintained for up to 2 weeks. Furthermore, iNOS knockout mice ($iNOS^{-1-}$) were resistant to KA-induced neuronal death. The present study demonstrates that aminoguanidine attenuates KA-induced neuronal death, whereas L-NAME aggravates neuronal death, in the CA3 region of the hippocampus, suggesting that NOS isoforms play different roles in KA-induced excitotoxicity.

Studies on Gene Expression of Yukmijihwang-tang using High-throughput Gene Expression Analysis Techniques (대규모 유전자 분석 기법을 이용한 육미지황원의 유전자 발현 연구)

  • Kang, Bong-Joo;Kim, Yun-Taik;Cho, Dong-Wuk
    • Korean Journal of Oriental Medicine
    • /
    • v.8 no.2 s.9
    • /
    • pp.95-107
    • /
    • 2002
  • Yukmijihwang-tang(YM) is a noted herbal prescription in Chinese and Korean traditional medicines, and it has been known to reinforce the vital essence and has been widely used for a variety of disease such as stroke, osteoporosis, anti-tumor, and hypothyrodism. Regarding its traditional use, YM has been known to reinforce the Yin (vital essence) of liver and kidney. Also it has been known to reinforce nutrition and biological function in brain. Recently, studies suggested that YM increase antioxidant activities and exert the protective effect against oxidant-induced liver cell injury. We investigated the high-throughput gene expression analysis on the Yukmijihwang-tang administrated in SD rats. Microarray data were validated on a limited number of genes by semiquantitative RT-PCR and Western blot analyses. The recent availability of microarrays provides an attractive strategy for elaborating an unbiased molecular profile of large number of genes in drug discovery This experimental approach offers the potential to identify molecules or cellular pathways not previously associated with herbal medicine. Total RNA from normal control brain and Yukmijihwang-tang administrated brain were hybridized to microarrays containing 10,000 rat genes. The 52 genes were found to be up-regulated(twice or more) excluding EST gene. The nine genes were found to be down-regulated(twice or more) excluding EST gene. Gene array technology was used to identify for the first time many genes expression pathway analysis that arecell cycle pathway, apoptosis pathway, electron transport chain pathway, cytoplasmic ribosomal protein pathway, fatty acid degradation pathway, and TGF-beta signaling pathway. These differentially expressed genes pathway analysis have not previously been iavestigated in the context of herbal medicine efficacy and represent novel factors for further study of the mechanism of herbal medicine efficacy.

  • PDF

Protective effect of p53 in vascular smooth muscle cells against nitric oxide-induced apoptosis is mediated by up-regulation of heme oxygenase-2

  • Kim, Young-Myeong;Choi, Byung-Min;Kim, Yong-Seok;Kwon, Young-Guen;Kibbe, Melina R.;Billiar, Timothy R.;Tzeng, Edith
    • BMB Reports
    • /
    • v.41 no.2
    • /
    • pp.164-169
    • /
    • 2008
  • The tumor suppressor gene p53 regulates apoptotic cell death and the cell cycle. In this study, we investigated the role of p53 in nitric oxide (NO)-induced apoptosis in vascular smooth muscle cells (VSMCs). We found that the NO donor S-nitroso-N-acetyl-penicillamine (SNAP) increased apoptotic cell death in p53-deficient VSMCs compared with wild-type cells. The heme oxygen-ase (HO) inhibitor tin protoporphyrin IX reduced the resistance of wild-type VSMCs to SNAP-induced cell death. SNAP promoted HO-1 expression in both cell types. HO-2 protein was increased only in wild-type VSMCs following SNAP treatment; however, similar levels of HO-2 mRNA were detected in both cell types. SNAP significantly increased the levels of non-heme-iron and dinitrosyl iron-sulfur clusters in wild-type VSMCs compared with p53-deficient VSMCs. Moreover, pretreatment with FeSO4 and the carbon monoxide donor CORM-2, but not biliverdin, significantly protected p53-deficient cells from SNAP-induced cell death compared with normal cells. These results suggest that wild-type VSMCs are more resistant to NO-mediated apoptosis than p53-deficient VSMCs through p53-dependent up-regulation of HO-2.

Study on the Protective Effects of 6R-Tetrahydrobiopterin on the Oxidative Neuronal Injury in Mouse Cortical Cultures (배양된 대뇌피질세포에서 산화성 손상에 대한 6R-Tetrahydrobiopterin의 억제작용)

  • Moon, Kyung Sub;Lee, Je Hyuk;Kang, Sam Suk;Kim, Soo Han;Kim, Jae Hyoo;Jung, Shin;Kim, Tae Sun;Lee, Jung Kil
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.9
    • /
    • pp.1059-1064
    • /
    • 2001
  • Objective : 6R-Tetrahydrobiopterin(BH4) is a cofactor for the aromatic amino acid hydroxylases which is essential for the biosynthesis of catecholamines and serotonin. It also acts as a cofactor for nitric oxide synthase, and stimulates the release of some neurotransmitters such as dopamine, serotonin, acetylcholine and glutamate. Recently, it has been reported that BH4 could induce cellular proliferation and enhance neuronal survival. This study was performed to investigate the antioxidative effect of BH4 on the various oxidative insults in mouse cerebral cortical cell cultures. Methods : Iron ion(FeCl2), zinc ion(ZnCl2), sodium nitroprusside(SNP) and buthionine sulfoximine(BSO, a glutathione depletor) were used as oxidants. Cell death was assessed by measurement of lactate dehydrogenase efflux to bathing media at the end of exposure. Result : All 4 oxidants induced neuronal cell death associated with cell body swelling, which was markedly inhibited by trolox($100{\mu}M$), a vitamin E analog. BH4($10-100{\mu}M$) markedly inhibited the neuronal cell death induced by all 4 oxidants($20{\mu}M\;Cu^{2+}$, $20{\mu}M\;Zn^{2+}$, $1{\mu}M$ SNP or 1mM BSO). However, BH4 failed to inhibit the neuronal cell death induced by 24hr exposure to $20{\mu}M$ NMDA. Conculsion : These results suggest that BH4 has antioxidative action independently of any actions of enzyme cofactor.

  • PDF

Relative Apoptosis-inducing Potential of Homeopathic Condurango 6C and 30C in H460 Lung Cancer Cells In vitro -Apoptosis-induction by homeopathic Condurango in H460 cells-

  • Sikdar, Sourav;Saha, Santu Kumar;Khuda-Bukhsh, Anisur Rahman
    • Journal of Pharmacopuncture
    • /
    • v.17 no.1
    • /
    • pp.59-69
    • /
    • 2014
  • Objectives: In homeopathy, it is claimed that more homeopathically-diluted potencies render more protective/curative effects against any disease condition. Potentized forms of Condurango are used successfully to treat digestive problems, as well as esophageal and stomach cancers. However, the comparative efficacies of Condurango 6C and 30C, one diluted below and one above Avogadro's limit (lacking original drug molecule), respectively, have not been critically analyzed for their cell-killing (apoptosis) efficacy against lung cancer cells in vitro, and signalling cascades have not been studied. Hence, the present study was undertaken. Methods: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays were conducted on H460-non-small-cell lung cancer (NSCLC) cells by using a succussed ethyl alcohol vehicle (placebo) as a control. Studies on cellular morphology, cell cycle regulation, generation of reactive oxygen species (ROS), changes in mitochondrial membrane potential (MMP), and DNA-damage were made, and expressions of related signaling markers were studied. The observations were done in a "blinded" manner. Results: Both Condurango 6C and 30C induced apoptosis via cell cycle arrest at subG0/G1 and altered expressions of certain apoptotic markers significantly in H460 cells. The drugs induced oxidative stress through ROS elevation and MMP depolarization at 18-24 hours. These events presumably activated a caspase-3-mediated signalling cascade, as evidenced by reverse transcriptase-polymerase chain reaction (RT-PCR), western blot and immunofluorescence studies at a late phase (48 hours) in which cells were pushed towards apoptosis. Conclusion: Condurango 30C had greater apoptotic effect than Condurango 6C as claimed in the homeopathic doctrine.

Peroxynitrite Scavenging Mechanism of Zingiberis Rhizoma (생강(生薑)의 Peroxynitrite 제거 기전)

  • Shin Sang-Guk;Jeong Ji-Cheon
    • The Journal of Internal Korean Medicine
    • /
    • v.24 no.1
    • /
    • pp.75-83
    • /
    • 2003
  • Objectives : Peroxynitrite($ONOO^-$), formed from the reaction of $O2^-$ and NO, is a cytotoxic species that can oxidize several cellular components such as proteins, lipids and DNA. It has been involved in the aging process and age-related diseases such as Alzheimer's disease, rheumatoid arthritis, cancer and atherosclerosis. The aim of this study was to investigate scavenging activities of $ONOO^-$ and its precursors, NO and $O_{2^-}$ and its scavenging mechanism of Zingiberis Rhizoma (ZR). Methods : To investigate scavenging activities of $ONOO^-,\;NO,\;O_{2^-}$ and its scavenging mechanism, we used fluorescent probes like DCFDA, DAF-2 and DHR 123. The $ONOO^-$ scavenging activity on ZR was assayed by measuring oxidized dihydrorhodamine 123 (DHR 123) by fluorometry. The scavenging efficacy was expressed as IC50, showing the concentration of each sample that is required to cause 50% inhibition of DHR 123 oxidation. In a separate study, the protective effect of ZR on $ONOO^-$-induced nitration of bovine serum albumin was investigated through immuno-assay with a monoclonal anti-nitryrosine antibody, and a horseradish peroxidase-conjugated anti-mouse secondary antibody from sheep. Results : ZR markedly scavenged authentic $ONOO^-,\;O_{2^-}$ and NO. It also inhibited $ONOO^-$ induced by $O_{2^-}$ and NO which are derived from SIN-1. The data demonstrated that ZR led to decreased $ONOO^-$ mediated nitration of tyrosine through electron donation. It also inhibited the nitration of bovine serum albumin induced by $ONOO^-$ in a dose-dependent manner. Furtheremore, it blocked LPS-induced ROS and RNS generation. Conclusions : These results suggest that ZR can be developed as an effective $ONOO^-$ scavenger for the prevention of aging process and age-related diseases.

  • PDF

Anti-Oxidative Effect of Myrtenal in Prevention and Treatment of Colon Cancer Induced by 1, 2-Dimethyl Hydrazine (DMH) in Experimental Animals

  • Lokeshkumar, Booupathy;Sathishkumar, Venkatachalam;Nandakumar, Natarajan;Rengarajan, Thamaraiselvan;Madankumar, Arumugam;Balasubramanian, Maruthaiveeran Periyasamy
    • Biomolecules & Therapeutics
    • /
    • v.23 no.5
    • /
    • pp.471-478
    • /
    • 2015
  • Colon cancer is considered as the precarious forms of cancer in many developed countries, with few to no symptoms; the tumor is often diagnosed in the later stages of cancer. Monoterpenes are a major part of plant essential oils found largely in fruits, vegetables and herbs. The cellular and molecular activities show therapeutic progression that may reduce the risk of developing cancer by modulating the factors responsible for colon carcinogenesis. Colon cancer was induced with DMH with a dose of (20 mg/Kg/body weight) for 15 weeks by subcutaneous injection once in a week. Myrtenal treatment was started with (230 mg/Kg/body weight) by intragastric administration, one week prior to DMH induction and continued till the experimental period of 30 weeks. The Invivo results exhibit the elevated antioxidant and lipid peroxidation levels in DMH treated animals. The Histopathological analysis of colon tissues well supported the biochemical alterations and inevitably proves the protective role of Myrtenal. Treatment with myrtenal to cancer bearing animals resulted in a remarkable increase in the inherent antioxidants and excellent modulation in the morphological and physiological nature of the colon tissue. It is thus concluded that myrtenal exhibits excellent free radical scavenging activity and anticancer activity through the suppression of colon carcinoma in Wistar albino rats.

Carbon Monoxide Ameliorates 6-Hydroxydopamine-Induced Cell Death in C6 Glioma Cells

  • Moon, Hyewon;Jang, Jung-Hee;Jang, Tae Chang;Park, Gyu Hwan
    • Biomolecules & Therapeutics
    • /
    • v.26 no.2
    • /
    • pp.175-181
    • /
    • 2018
  • Carbon monoxide (CO) is well-known as toxic gas and intrinsic signaling molecule such as neurotransmitter and blood vessel relaxant. Recently, it has been reported that low concentration of CO exerts therapeutic actions under various pathological conditions including liver failure, heart failure, gastric cancer, and cardiac arrest. However, little has been known about the effect of CO in neurodegenerative diseases like Parkinson's disease (PD). To test whether CO could exert a beneficial action during oxidative cell death in PD, we examined the effects of CO on 6-hydroxydopamine (6-OHDA)-induced cell death in C6 glioma cells. Treatment of CO-releasing molecule-2 (CORM-2) significantly attenuated 6-OHDA-induced apoptotic cell death in a dose-dependent manner. CORM-2 treatment decreased Bax/Bcl2 ratio and caspase-3 activity, which had been increased by 6-OHDA. CORM-2 increased phosphorylation of NF-E2-related factor 2 (Nrf2) which is a transcription factor regulating antioxidant proteins. Subsequently, CORM-2 also increased the expression of heme oxygenase-1 and superoxide dismutases (CuZnSOD and MnSOD), which were antioxidant enzymes regulated by Nrf2. These results suggest that CO released by CORM-2 treatment may have protective effects against oxidative cell death in PD through the potentiation of cellular adaptive survival responses via activation of Nrf2 and upregulation of heme oxygenase-1, leading to increasing antioxidant defense capacity.

Inhibitory Effect of Capsaicin against Carcinogen-induced Oxidative Damage in Rats

  • Yu, Ri-Na;Park, Min-Ah;Kawada, Teruo;Kim, Byung-Sam;Han, In-Seob;Yoo, Hoon
    • Preventive Nutrition and Food Science
    • /
    • v.7 no.1
    • /
    • pp.67-71
    • /
    • 2002
  • Capsaicin (trans-8-methyl-N-vanillyl-6-nonenarnide), a major pungent component of hot pepper, is known to exert antioxidative properties. In this study, we investigated the protective effects of capsaicin against chemical carcinogen-induced oxidative damage in rats. Male Sprague Dawley rats weighting 230~250 g were treated with chemical carcinogens such as 2-nitropropane (2NP) or n-methyl-N'-nitro-N-nitrosoguanidine (MNNG) after (or before) the administration of capsaicin at doses of 0.5, 1,5 mg/kg. The level of lipid peroxidation in rat liver was estimated by measuring the amounts of thiobarbituric acid reactive substances. The degree of oxidative DNA damage was evacuated by measuring a DNA adduct, 8-hydroxydeoxyguanosine (8-OHdG), in urine. Antioxidative activities of capsaicin and its metabolites in vitro were determined by the measurement of DPPH (1,1-diphenyl-2-picrylhydrazyl), a radical quencher. Significant inhibition of 2-NP induced lipid peroxidation was observed in the liver of the rat when treated with capsaicin. MNNG-induced urinary excretion of 8-OHdG was decreased by capsaicin treatment. Capsaicin and its metabolites inhibited net only the formation of free radicals, but also lipid peroxidation in vitro. Our results show that capsaicin may function as a free radical scavenger against chemical carcinogen-induced oxidative cellular damage in vivo. The observed antioxidative activities of capsaicin may play an important role in the process of chemoprevention.