• 제목/요약/키워드: cellular polymer

검색결과 117건 처리시간 0.035초

모서리가 제거된 팔면체 인장모델을 이용한 다공성 폴리머 박막의 반복변형거동 수치해석 (Numerical Analysis of Cyclic Deformation of Polymer Foam Film Using Stretched Truncated Octahedron Model)

  • 유위경;이영석
    • 한국정밀공학회지
    • /
    • 제27권3호
    • /
    • pp.104-110
    • /
    • 2010
  • Cyclic deformations of polymer foam film are simulated using the finite element method. Material of polymer foam film is polypropylene (PP). The calculated polymer foam film is micro-scale thin film has cellular structure. The polymer foam film is used in ferro-electret applications. The polymer foam film is idealized to one cell structure as lens shaped stretched truncated octahedron model. Cyclic deformation is performed by uniaxial stretching. Stretching direction is perpendicular to plane of cellular film. Various cyclic strain amplitudes, pore wall thicknesses, pore shape are investigated to find deformation tendency of cellular structure. Consequently, cellular structure has various macroscopic stresses on cyclic deformation with various pore thickness and pore shape.

Processing of Porous Ceramics with a Cellular Structure Using Polymer Beads

  • Ha, Jung-Soo;Kim, Chang-Sam
    • 한국세라믹학회지
    • /
    • 제40권12호
    • /
    • pp.1159-1164
    • /
    • 2003
  • Two processing routes (i.e., the gel casting and polymer preform routes) using polymer beads were studied to fabricate porous ceramics with a cellular structure. The gel casting route, comprising the gel casting of a ceramic slurry mixed with polymer beads, was found to be inadequate to produce porous ceramic bodies with a interconnected pore structure, due to complete coating of the slurry on the polymer beads, which left just isolated pores in the final sintered bodies. The polymer preform route, involving the infiltration of a polymer beads preform with the ceramic slurry, successfully produced porous ceramics with a highly interconnected network of spherical pores. The pore size of 250-300 $\mu\textrm{m}$ was demonstrated and the porosity ranged from 82 to 86%. This process is advantageous to control the pore size because it is determined by the sizes of polymer beads used. Another feature is the avoidance of hollow skeleton, giving a high strength.

재발포가 MCPs에 미치는 영향 (A study on the effect of twice foaming process on microcellular foamed plastics)

  • 박준영;차성운;서정환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.421-422
    • /
    • 2006
  • According to the industrialization the using of polymers is increased by their mechanical or commercial demands. At now, the using of polymers is become bigger and bigger than yet. On the other words, our whole life is covered by the polymers. Due to the extended polymer using, the material cost is higher and higher. Therefore, the people used the polymer foaming process using the gas. The polymer foaming using the pentane or butane gas is prohibited by the government cause of the explosiveness and non-environmental friendly. Therefore, the members of MIT invented the Micro-cellular Polymer Foaming in 1980. The Micro-cellular Polymers has many cells in the polymer matrix. By compare between non-foamed polymers, the Micro-cellular Polymers have low material cost, soundproof and shock less. The purpose of this study is to study the twice foamed polymer by batch process. To know the reaction by step of microcellular foaming process, we measure the density of polymer. And to viewing the cell morphology, we used the scanning electron microscopy(SEM).

  • PDF

동일 충격 에너지 조건하에서 다공질 고분자의 충격거동에 관한 연구 (Crashworthy behaviour of cellular polymer under constant impact energy)

  • 정광영;전성식
    • Composites Research
    • /
    • 제22권4호
    • /
    • pp.27-32
    • /
    • 2009
  • 본 연구에서는 충돌속도가 다르지만, 총 충돌에너지는 동일하게 유지한 상태에서 충돌을 가했을 때 발포 고분자의 응력-변형률 관계와 충돌에너지 흡수 특성에 관하여 고찰하였다. 이는 충돌시 관성과 변형률 속도에 변화를 주어 재료의 반응거동 및 특성을 파악하기 위함이다. 두가지 다른 밀도(64 $kg/m^3$, 89 $kg/m^3$)를 갖는 발포고분자시편에 대한 준정적시험과 충돌시험이 수행되었다. 또한 Sherwood-Frost 모델과 임펄스 모멘텀 이론의 두가지가 연성된 방정식을이용하여 발포고분자의 구성방정식으로 제안하였다.\ 제안된 구성방정식을 이용하여, 응력변형률 선도를 구하고, 충돌시험결과와 비교하여, 본 구성방정식이 우수하게 결과를 예측할 수 있는 것으로 나타났다.

Cellular Adhesions and Protein Dynamics on Carbon Nanotube/Polymer composites Surfaces

  • 강민지;왕문평;임연민;김진국;강동우
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2010년도 춘계학술발표대회
    • /
    • pp.45.2-45.2
    • /
    • 2010
  • Possessing of carbon nanotubes in biopolymer intrigued much interest due to their mechanical and unique nanoscale surface properties. Surface stiffness can be controlled by the amount of carbon nanotubes in polymer and surface wettability can be altered by the order of nanoscale surface roughness. Protein adsorption mechanism on nanostructured carbon nanotube/polymer thin film will be discussed in this study. In addition, we identified that mechanical stimuli also contribute the messenchymal stem cell and bone cell interactions. Importantly, live cell analysis system also showed altered morphology and cellular functions. Thus, embedding of carbon nanostructures simultaneously contribute to protein adsorption and cellular interactions. In conclusion, this study demonstrated the evidence that nanoscale surface features determine the subsequent biological interactions, such as protein adsorption and cellular interactions.

  • PDF

Processing of Cellular SiC Ceramics Using Polymer Microbeads

  • Lee, Sung-Hee;Kim, Young-Wook
    • 한국세라믹학회지
    • /
    • 제43권8호
    • /
    • pp.458-462
    • /
    • 2006
  • A simple pressing process using a SiC powder, $Al_2O_3-Y_2O_3$ sintering additive, and polymer microbeads for fabricating cellular SiC ceramics is demonstrated. The strategy for making the cellular ceramics involves: (i) forming certain shapes using a mixture of a SiC powder, $Al_2O_3-Y_2O_3$ sintering additive, and polymer microbeads by pressing; (ii) heat-treatment of the formed body to burn-out the microbeads; and (iii) sintering the body. By controlling the microsphere content and sintering temperature, it was possible to adjust the porosity in a range of 16% to 69%. The flexural and compressive strengths of cellular SiC ceramics with $\sim$40% porosity were $\sim$60 MPa and $\sim$160 MPa, respectively.

힘 피드백 기반의 세포조작을 위한 세포막 침습력 측정 (Cellular Force Sensing for Force Feedback-Based Biological Cell Injection)

  • 김덕호;윤석;강현재;김병규
    • 대한기계학회논문집A
    • /
    • 제27권12호
    • /
    • pp.2079-2084
    • /
    • 2003
  • In biological cell manipulation, manual thrust or penetration of an injection pipette into an embryo cell is currently performed by a skilled operator, relying on visual feedback information only. Accurately measuring cellular forces is a requirement for minimally invasive cell injections. Moreover, the cellular force sensing is essential in investigating the biophysical properties for cell injury and membrane modeling studies. This paper presents cellular force measurements for the force feedback-based biomanipulation. Cellular force measurement system using piezoelectric polymer sensor is implemented to measure the penetration force of a zebrafish egg cell. First, measurement system setup and calibration are described. Second, the force feedback-based biomanipulation is experimentally carried out. Experimental results show that it successfully supplies real-time cellular force feedback to the operator at tens of uN and thus plays a main role in improving the reliability of biological cell injection tasks.

힘반향 기반의 바이오매니퓰레이션을 위한 세포 조작력 측정 (Cellular Force Measurement for Force Feedback-Based Biomanipulation)

  • 김덕호;김병규;윤석;강현재
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.237-240
    • /
    • 2003
  • In biological cell manipulation, manual thrust or penetration of an injection pipette into an embryo cell is currently performed by a skilled operator, relying on visual feedback information only. Accurately measuring cellular forces is a requirement for minimally invasive cell injections. Moreover, the cellular farce sensing is essential in investigating the biophysical properties for cell injury and membrane modeling studies. This paper presents cellular force measurements for the force feedback-based biomanipulation. Cellular force measurement system using piezoelectric polymer sensor is implemented to measure the penetration force of a zebrafish egg cell. First, measurement system setup and calibration are described. Second, the force feedback-based biomanipulation is experimentally carried out. Experimental results show that it successfully supplies real-time cellular force feedback to the operator at several tens of uN and thus plays a main role in improving the reliability of biological cell injection tasks.

  • PDF