• Title/Summary/Keyword: cellular polymer

Search Result 117, Processing Time 0.027 seconds

Numerical Analysis of Cyclic Deformation of Polymer Foam Film Using Stretched Truncated Octahedron Model (모서리가 제거된 팔면체 인장모델을 이용한 다공성 폴리머 박막의 반복변형거동 수치해석)

  • Yoo, Ui-Kyung;Lee, Young-Seog
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.3
    • /
    • pp.104-110
    • /
    • 2010
  • Cyclic deformations of polymer foam film are simulated using the finite element method. Material of polymer foam film is polypropylene (PP). The calculated polymer foam film is micro-scale thin film has cellular structure. The polymer foam film is used in ferro-electret applications. The polymer foam film is idealized to one cell structure as lens shaped stretched truncated octahedron model. Cyclic deformation is performed by uniaxial stretching. Stretching direction is perpendicular to plane of cellular film. Various cyclic strain amplitudes, pore wall thicknesses, pore shape are investigated to find deformation tendency of cellular structure. Consequently, cellular structure has various macroscopic stresses on cyclic deformation with various pore thickness and pore shape.

Processing of Porous Ceramics with a Cellular Structure Using Polymer Beads

  • Ha, Jung-Soo;Kim, Chang-Sam
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.12
    • /
    • pp.1159-1164
    • /
    • 2003
  • Two processing routes (i.e., the gel casting and polymer preform routes) using polymer beads were studied to fabricate porous ceramics with a cellular structure. The gel casting route, comprising the gel casting of a ceramic slurry mixed with polymer beads, was found to be inadequate to produce porous ceramic bodies with a interconnected pore structure, due to complete coating of the slurry on the polymer beads, which left just isolated pores in the final sintered bodies. The polymer preform route, involving the infiltration of a polymer beads preform with the ceramic slurry, successfully produced porous ceramics with a highly interconnected network of spherical pores. The pore size of 250-300 $\mu\textrm{m}$ was demonstrated and the porosity ranged from 82 to 86%. This process is advantageous to control the pore size because it is determined by the sizes of polymer beads used. Another feature is the avoidance of hollow skeleton, giving a high strength.

A study on the effect of twice foaming process on microcellular foamed plastics (재발포가 MCPs에 미치는 영향)

  • Park J.Y.;Cha S.W.;Seo J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.421-422
    • /
    • 2006
  • According to the industrialization the using of polymers is increased by their mechanical or commercial demands. At now, the using of polymers is become bigger and bigger than yet. On the other words, our whole life is covered by the polymers. Due to the extended polymer using, the material cost is higher and higher. Therefore, the people used the polymer foaming process using the gas. The polymer foaming using the pentane or butane gas is prohibited by the government cause of the explosiveness and non-environmental friendly. Therefore, the members of MIT invented the Micro-cellular Polymer Foaming in 1980. The Micro-cellular Polymers has many cells in the polymer matrix. By compare between non-foamed polymers, the Micro-cellular Polymers have low material cost, soundproof and shock less. The purpose of this study is to study the twice foamed polymer by batch process. To know the reaction by step of microcellular foaming process, we measure the density of polymer. And to viewing the cell morphology, we used the scanning electron microscopy(SEM).

  • PDF

Crashworthy behaviour of cellular polymer under constant impact energy (동일 충격 에너지 조건하에서 다공질 고분자의 충격거동에 관한 연구)

  • Jeong, Kwang-Young;Cheon, Seong-Sik
    • Composites Research
    • /
    • v.22 no.4
    • /
    • pp.27-32
    • /
    • 2009
  • Characterisation of the stress-strain relationship as well as crashworthiness of cellular polymer was investigated under constant impact energy with different velocities, considering inertia and strain rate effects simultaneously during the impact testing. Quasi-static and impact tests were carried out for two different density (64 $kg/m^3$, 89 $kg/m^3$) cellular polymer specimens. Also, the equations, coupled with the Sherwood-Frost model and the Impulse-Momentum theory, were employed to build the constitutive relation of the cellular polymer. The nominal stress-strain curves obtained from the constitutive relation were compared with results from impact tests and showed to be in good agreement.

Cellular Adhesions and Protein Dynamics on Carbon Nanotube/Polymer composites Surfaces

  • Gang, Min-Ji;Wang, Mun-Pyeong;Im, Yeon-Min;Kim, Jin-Guk;Gang, Dong-U
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.45.2-45.2
    • /
    • 2010
  • Possessing of carbon nanotubes in biopolymer intrigued much interest due to their mechanical and unique nanoscale surface properties. Surface stiffness can be controlled by the amount of carbon nanotubes in polymer and surface wettability can be altered by the order of nanoscale surface roughness. Protein adsorption mechanism on nanostructured carbon nanotube/polymer thin film will be discussed in this study. In addition, we identified that mechanical stimuli also contribute the messenchymal stem cell and bone cell interactions. Importantly, live cell analysis system also showed altered morphology and cellular functions. Thus, embedding of carbon nanostructures simultaneously contribute to protein adsorption and cellular interactions. In conclusion, this study demonstrated the evidence that nanoscale surface features determine the subsequent biological interactions, such as protein adsorption and cellular interactions.

  • PDF

Processing of Cellular SiC Ceramics Using Polymer Microbeads

  • Lee, Sung-Hee;Kim, Young-Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.8 s.291
    • /
    • pp.458-462
    • /
    • 2006
  • A simple pressing process using a SiC powder, $Al_2O_3-Y_2O_3$ sintering additive, and polymer microbeads for fabricating cellular SiC ceramics is demonstrated. The strategy for making the cellular ceramics involves: (i) forming certain shapes using a mixture of a SiC powder, $Al_2O_3-Y_2O_3$ sintering additive, and polymer microbeads by pressing; (ii) heat-treatment of the formed body to burn-out the microbeads; and (iii) sintering the body. By controlling the microsphere content and sintering temperature, it was possible to adjust the porosity in a range of 16% to 69%. The flexural and compressive strengths of cellular SiC ceramics with $\sim$40% porosity were $\sim$60 MPa and $\sim$160 MPa, respectively.

Cellular Force Sensing for Force Feedback-Based Biological Cell Injection (힘 피드백 기반의 세포조작을 위한 세포막 침습력 측정)

  • Kim, Deok-Ho;Yun, Seok;Kang, Hyun-Jae;Kim, Byung-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.12
    • /
    • pp.2079-2084
    • /
    • 2003
  • In biological cell manipulation, manual thrust or penetration of an injection pipette into an embryo cell is currently performed by a skilled operator, relying on visual feedback information only. Accurately measuring cellular forces is a requirement for minimally invasive cell injections. Moreover, the cellular force sensing is essential in investigating the biophysical properties for cell injury and membrane modeling studies. This paper presents cellular force measurements for the force feedback-based biomanipulation. Cellular force measurement system using piezoelectric polymer sensor is implemented to measure the penetration force of a zebrafish egg cell. First, measurement system setup and calibration are described. Second, the force feedback-based biomanipulation is experimentally carried out. Experimental results show that it successfully supplies real-time cellular force feedback to the operator at tens of uN and thus plays a main role in improving the reliability of biological cell injection tasks.

Cellular Force Measurement for Force Feedback-Based Biomanipulation (힘반향 기반의 바이오매니퓰레이션을 위한 세포 조작력 측정)

  • Kim, Duk-Ho;Kim, Byung-Kyu;Yoon, Seok;Kang, Hyun-Jae
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.237-240
    • /
    • 2003
  • In biological cell manipulation, manual thrust or penetration of an injection pipette into an embryo cell is currently performed by a skilled operator, relying on visual feedback information only. Accurately measuring cellular forces is a requirement for minimally invasive cell injections. Moreover, the cellular farce sensing is essential in investigating the biophysical properties for cell injury and membrane modeling studies. This paper presents cellular force measurements for the force feedback-based biomanipulation. Cellular force measurement system using piezoelectric polymer sensor is implemented to measure the penetration force of a zebrafish egg cell. First, measurement system setup and calibration are described. Second, the force feedback-based biomanipulation is experimentally carried out. Experimental results show that it successfully supplies real-time cellular force feedback to the operator at several tens of uN and thus plays a main role in improving the reliability of biological cell injection tasks.

  • PDF