• Title/Summary/Keyword: cellular level

Search Result 1,456, Processing Time 0.042 seconds

Change in the Gastro-Intestinal Tract by Overexpressed Activin Beta A

  • Kim, Mi-Nyeu;Kim, Young Il;Cho, Chunghee;Mayo, Kelly E.;Cho, Byung-Nam
    • Molecules and Cells
    • /
    • v.38 no.12
    • /
    • pp.1079-1085
    • /
    • 2015
  • Originally, activins were identified as stimulators of FSH release in reproduction. Other activities, including secondary axis formation in development, have since been revealed. Here, we investigated the influence of activin ${\beta}_A$ on the body, including the gastro-intestinal (GI) tract. Initially, the activin ${\beta}_A$ protein was detected in the serum proportional to the amount of pCMV-rAct plasmid injected. The induced level of activin ${\beta}_A$ in muscle was higher in female than male mice. Subsequent results revealed that stomach and intestine were severely damaged in pCMV-rAct-injected mice. At the cellular level, loss of parietal cells was observed, resulting in increased pH within the stomach. This phenomenon was more severe in male than female mice. Consistent with damage of the stomach and intestine, activin ${\beta}_A$ often led to necrosis in the tip of the tail or foot, and loss of body weight was observed in pCMV-rAct-injected male but not female mice. Finally, in pCMV-rAct-injected mice, circulating activin ${\beta}_A$ led to death at supraphysiological doses, and this was dependent on the strain of mice used. Taken together, these results indicate that activin ${\beta}_A$ has an important role outside of reproduction and development, specifically in digestion. These data also indicate that activin ${\beta}_A$ must be controlled within a narrow range because of latent lethal activity. In addition, our approach can be used effectively for functional analysis of secreted proteins.

Macroscopic Biclustering of Gene Expression Data (유전자 발현 데이터에 적용한 거시적인 바이클러스터링 기법)

  • Ahn, Jae-Gyoon;Yoon, Young-Mi;Park, Sang-Hyun
    • The KIPS Transactions:PartD
    • /
    • v.16D no.3
    • /
    • pp.327-338
    • /
    • 2009
  • A microarray dataset is 2-dimensional dataset with a set of genes and a set of conditions. A bicluster is a subset of genes that show similar behavior within a subset of conditions. Genes that show similar behavior can be considered to have same cellular functions. Thus, biclustering algorithm is a useful tool to uncover groups of genes involved in the same cellular process and groups of conditions which take place in this process. We are proposing a polynomial time algorithm to identify functionally highly correlated biclusters. Our algorithm identifies 1) the gene set that has hidden patterns even if the level of noise is high, 2) the multiple, possibly overlapped, and diverse gene sets, 3) gene sets whose functional association is strongly high, and 4) deterministic biclustering results. We validated the level of functional association of our method, and compared with current methods using GO.

Neuroprotective Effect of Epalrestat on Hydrogen Peroxide-Induced Neurodegeneration in SH-SY5Y Cellular Model

  • Lingappa, Sivakumar;Shivakumar, Muthugounder Subramanian;Manivasagam, Thamilarasan;Somasundaram, Somasundaram Thirugnanasambandan;Seedevi, Palaniappan
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.6
    • /
    • pp.867-874
    • /
    • 2021
  • Epalrestat (EPS) is a brain penetrant aldose reductase inhibitor, an approved drug currently used for the treatment of diabetic neuropathy. At near-plasma concentration, EPS induces glutathione biosynthesis, which in turn reduces oxidative stress in the neuronal cells. In this study, we found that EPS reduces neurodegeneration by inhibiting reactive oxygen species (ROS)-induced oxidative injury, mitochondrial membrane damage, apoptosis and tauopathy. EPS treatment up to 50 µM did not show any toxic effect on SH-SY5Y cell line (neuroblastoma cells). However, we observed toxic effect at a concentration of 100 µM and above. At 50 µM concentration, EPS showed better antioxidant activity against H2O2 (100 µM)-induced cytotoxicity, ROS formation and mitochondrial membrane damage in retinoic acid-differentiated SH-SY5Y cell line. Furthermore, our study revealed that 50 µM of EPS concentration reduced the glycogen synthase kinase-3 β (GSK3-β) expression and total tau protein level in H2O2 (100 µM)-treated cells. Findings from this study confirms the therapeutic efficacy of EPS on regulating Alzheimer's disease (AD) by regulating GSK3-β and total tau proteins phosphorylation, which helped to restore the cellular viability. This process could also reduce toxic fibrillary tangle formation and disease progression of AD. Therefore, it is our view that an optimal concentration of EPS therapy could decrease AD pathology by reducing tau phosphorylation through regulating the expression level of GSK3-β.

Immunocytolocalization of Cell Wall Peroxidase and Other Wall Antigens from Maize Seedlings

  • Kim, Sung-Ha
    • Journal of Plant Biology
    • /
    • v.39 no.2
    • /
    • pp.99-105
    • /
    • 1996
  • Immunocytochemistry utilizes the specificity of the antigen-antibody reaction to localize specific antigens in cells or cellular organelles. Here we report the use of monoclonal antibodies, in conjunction with gold-labeled second antibodies to study the ultrastructural localization and tissue distribution of the Mr 98, 000 anionic peroxidase and other wall antigens. The antibody specific for this wall peroxidase, mWP3, labeled mainly the cell wall area. At the tissue level, the Mr 98, 000 peroxidase is located predominantly in the leaf mesophyll, internal coleoptile and sieve elements, but not in the root, as assayed with these procedures. The coleoptile walls were less heavily stained than the walls of leaf mesophyll cells. At the subcellular level, it is localized mainly in intercellular regions of the cell walls. A similar staining pattern was revealed by mWP19, one of anti-$\beta$ glucosidase antibody, though it looked less heavily stained than one with mWP3. In order to serve as a control wall staining using IgM monoclonal antibodies, mWP18 was used. Most of the label is localized over wall regions of cells of the young leaf mesophyll and coleoptile.

  • PDF

Identification of a Regulatory Region within the luxR Structural Gene in a Marine Symbiotic Bacterium, Vibrio fischeri

  • Choi, Sang-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.3
    • /
    • pp.176-182
    • /
    • 1994
  • The light-organ symbiont of pine cone fish, Vibrio fischeri, senses its presence in the host and responds to environmental changes by differentially expressing its symbiosis-related luminescence genes. The V. fischeri luminescence genes are activated by LuxR protein in the presence of an autoinducer. In an effort to elucidate the mechanism of regulation of luxR, a plasmid containing luxR was mutagenized in vitro with hydroxylamine and a luxR mutant plasmid was isolated by its ability to activate luminescence genes cloned in E. coli in the absence of the autoinducer. The specific base change identified by DNA sequencing was only single base transition at +78 from the transcriptional start of luxR. Based on a Western immunoblot analysis, the nucleotide change directed the synthesis of much higher level of LuxR protein without any amino acid substitutions. The results suggest that the region including the +78th base is presumably internal operator required for autorepression of luxR, and the increased cellular level of LuxR results in activation of luminescence genes by autoinducer independent fashion.

  • PDF

Expression Analysis of phbC Coding for Poly-3-hydroxybutyrate (PHB) Synthase of Rhodobacter sphaeroides

  • Kho, Dhong-Hyo;Yang, Jai-Myung;Kim, Kun-Soo;Lee, Jeong-Kug
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.310-316
    • /
    • 2001
  • Poly-3-hydroxybutyrate (PHB) synthase catalyzed the last enzymic step to synthesize the intracellular PHB of Rhodobacter sphaeroides. No PHB was detected when the phbC coding for PhB synthase was interrupted, and its expression was regulated at the level of transcription. The cellular PHB content increased about four- to six-fold during the growth transition from the exponential to the early stationary phase under both aerobic and photoheterotrophic conditions. The PHB content during the aerobic growth seemed to be determined by the PhB synthase activity. However, the PHB synthase activity of photoheterotrophically grown cells did not correlate with the PhB content, suggesting a photoheterotrophic regulation different from the aerobic control. Thus, the PHB content of R. sphaeroides was regulated at the transcription level only under aerobic conditions.

  • PDF

Cardiovascular Molecular Imaging (심장 분자영상)

  • Lee, Kyung-Han
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.3
    • /
    • pp.229-239
    • /
    • 2009
  • Molecular imaging strives to visualize processes in living subjects at the molecular level. Monitoring biochemical processes at this level will allow us to directly track biological processes and signaling events that lead to pathophysiological abnormalities, and help make personalized medicine a reality by allowing evaluation of therapeutic efficacies on an individual basis. Although most molecular imaging techniques emerged from the field of oncology, they have now gradually gained acceptance by the cardiovascular community. Hence, the availability of dedicated high-resolution small animal imaging systems and specific targeting imaging probes is now enhancing our understanding of cardiovascular diseases and expediting the development of newer therapies. Examples include imaging approaches to evaluate and track the progress of recent genetic and cellular therapies for treatment of myocardial ischemia. Other areas include in vivo monitoring of such key molecular processes as angiogenesis and apoptosis, Cardiovascular molecular imaging is already an important research tool in preclinical experiments. The challenge that lies ahead is to implement these techniques into the clinics so that they may help fulfill the promise of molecular therapies and personalized medicine, as well as to resolve disappointments and controversies surrounding the field.

Transcriptional Response According to Strength of Calorie Restriction in Saccharomyces cerevisiae

  • Lee, Yae-Lim;Lee, Cheol-Koo
    • Molecules and Cells
    • /
    • v.26 no.3
    • /
    • pp.299-307
    • /
    • 2008
  • To characterize gene expression that is dependent on the strength of calorie restriction (CR), we obtained transcriptome at different levels of glucose, which is a major energy and carbon source for budding yeast. To faithfully mimic mammalian CR in yeast culture, we reconstituted and grew seeding yeast cells in fresh 2% YPD media before inoculating into 2%, 1%, 0.5% and 0.25% YPD media to reflect different CR strengths. We collected and characterized 160 genes that responded to CR strength based on the rigorous statistical analyses of multiple test corrected ANOVA (adjusted p value < 0.1 or raw p value < 0.0031) and Pearson correlation (|r| > 0.7). Based on the individual gene studies and the GO Term Finder analysis of 160 genes, we found that CR dose-dependently and gradually increased mitochondrial function at the transcriptional level. Therefore, we suggest these 160 genes are markers that respond to CR strength and that might be useful in elucidating CR mechanisms, especially how stronger CR extends life span more.

Training Molecularly Enabled Field Biologists to Understand Organism-Level Gene Function

  • Kang, Jin-Ho;Baldwin, Ian T.
    • Molecules and Cells
    • /
    • v.26 no.1
    • /
    • pp.1-4
    • /
    • 2008
  • A gene's influence on an organism's Darwinian fitness ultimately determines whether it will be lost, maintained or modified by natural selection, yet biologists have few gene expression systems in which to measure whole-organism gene function. In the Department of Molecular Ecology at the Max Planck Institute for Chemical Ecology we are training "molecularly enabled field biologists" to use transformed plants silenced in the expression of environmentally regulated genes and the plant's native habitats as "laboratories." Research done in these natural laboratories will, we hope, increase our understanding of the function of genes at the level of the organism. Examples of the role of threonine deaminase and RNA-directed RNA polymerases illustrate the process.

Metabolomic Response of Chlamydomonas reinhardtii to the Inhibition of Target of Rapamycin (TOR) by Rapamycin

  • Lee, Do Yup;Fiehn, Oliver
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.7
    • /
    • pp.923-931
    • /
    • 2013
  • Rapamycin, known as an inhibitor of Target of Rapamycin (TOR), is an immunosuppressant drug used to prevent rejection in organ transplantation. Despite the close association of the TOR signaling cascade with various scopes of metabolism, it has not yet been thoroughly investigated at the metabolome level. In our current study, we applied mass spectrometric analysis for profiling primary metabolism in order to capture the responsive dynamics of the Chlamydomonas metabolome to the inhibition of TOR by rapamycin. Accordingly, we identified the impact of the rapamycin treatment at the level of metabolomic phenotypes that were clearly distinguished by multivariate statistical analysis. Pathway analysis pinpointed that inactivation of the TCA cycle was accompanied by the inhibition of cellular growth. Relative to the constant suppression of the TCA cycle, most amino acids were significantly increased in a time-dependent manner by longer exposure to rapamycin treatment, after an initial down-regulation at the early stage of exposure. Finally, we explored the isolation of the responsive metabolic factors into the rapamycin treatment and the culture duration, respectively.