• Title/Summary/Keyword: cellular immunity

Search Result 299, Processing Time 0.026 seconds

Overview for Immune-related Efficacies and their Mechanisms of Ginseng

  • Lee, Myong-Min;Son, Chang-Gue
    • The Journal of Korean Medicine
    • /
    • v.29 no.5
    • /
    • pp.118-125
    • /
    • 2008
  • Objective :Ginseng is one of the most popular Oriental medicinal plants considered as a tonic worldwide. This study aimed to produce comprehensive understanding for immune-related pharmaceutical activities of Ginseng. Methods: We surveyed all literatures, 168 of immunity-focused papers with Ginseng in Pub-med, and analyzed pharmaceutical characters according to immune elements and Ginseng components. Results : The main functions of Ginseng have been associated with modulation of immunity. Whole body of Ginseng or its ingredients differently show the effects on both cellular and humoral elements of immune system. Ginseng enhances the activities of T and B lymphocytes, NK cells, macrophages and dendritic cells whileas suppresses mast cell-associated allergy and release of histamine. Conclusion : These results will provide Korean doctors or scientists an immune-related overview of Ginseng, and help them in clinical applications and developments of Korean Ginseng as a global competitive drug in world market.

  • PDF

Heat Shock Proteins: A Review of the Molecular Chaperones for Plant Immunity

  • Park, Chang-Jin;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • v.31 no.4
    • /
    • pp.323-333
    • /
    • 2015
  • As sessile organisms, plants are exposed to persistently changing stresses and have to be able to interpret and respond to them. The stresses, drought, salinity, chemicals, cold and hot temperatures, and various pathogen attacks have interconnected effects on plants, resulting in the disruption of protein homeostasis. Maintenance of proteins in their functional native conformations and preventing aggregation of non-native proteins are important for cell survival under stress. Heat shock proteins (HSPs) functioning as molecular chaperones are the key components responsible for protein folding, assembly, translocation, and degradation under stress conditions and in many normal cellular processes. Plants respond to pathogen invasion using two different innate immune responses mediated by pattern recognition receptors (PRRs) or resistance (R) proteins. HSPs play an indispensable role as molecular chaperones in the quality control of plasma membrane-resident PRRs and intracellular R proteins against potential invaders. Here, we specifically discuss the functional involvement of cytosolic and endoplasmic reticulum (ER) HSPs/chaperones in plant immunity to obtain an integrated understanding of the immune responses in plant cells.

Humoral Immunity against SARS-CoV-2 and the Impact on COVID-19 Pathogenesis

  • Lee, Eunjin;Oh, Ji Eun
    • Molecules and Cells
    • /
    • v.44 no.6
    • /
    • pp.392-400
    • /
    • 2021
  • It has been more than a year since severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) first emerged. Many studies have provided insights into the various aspects of the immune response in coronavirus disease 2019 (COVID-19). Especially for antibody treatment and vaccine development, humoral immunity to SARS-CoV-2 has been studied extensively, though there is still much that is unknown and controversial. Here, we introduce key discoveries on the humoral immune responses in COVID-19, including the immune dynamics of antibody responses and correlations with disease severity, neutralizing antibodies and their cross-reactivity, how long the antibody and memory B-cell responses last, aberrant autoreactive antibodies generated in COVID-19 patients, and the efficacy of currently available therapeutic antibodies and vaccines against circulating SARS-CoV-2 variants, and highlight gaps in the current knowledge.

NLRP3 Inflammasome as Therapeutic Targets in Inflammatory Diseases

  • Annamneedi Venkata Prakash;Il-Ho Park;Jun Woo Park;Jae Pil Bae;Geum Seon Lee;Tae Jin Kang
    • Biomolecules & Therapeutics
    • /
    • v.31 no.4
    • /
    • pp.395-401
    • /
    • 2023
  • Innate immunity is a first line defence system in the body which is for sensing signals of danger such as pathogenic microbes or host-derived signals of cellular stress. Pattern recognition receptors (PRR's), which present in the cell memebrane, are suspect the infection through pathogen-associated molecular patterns (PAMP), and activate innate immunity with response to promote inflammation via inflammatory cells such as macrophages and neutrophils, and cytokines. Inflammasome are protein complexes which are part of innate immunity in inflammation to remove pathogens and repair damaged tissues. What is the important role of inflammation in disease? In this review, we are focused on the action mechanism of NLRP3 inflammasome in inflammatory diseases such as asthma, atopic dermatitis, and sepsis.

Role of RIN4 in Regulating PAMP-Triggered Immunity and Effector-Triggered Immunity: Current Status and Future Perspectives

  • Ray, Sujit Kumar;Macoy, Donah Mary;Kim, Woe-Yeon;Lee, Sang Yeol;Kim, Min Gab
    • Molecules and Cells
    • /
    • v.42 no.7
    • /
    • pp.503-511
    • /
    • 2019
  • As sessile organisms, plants have developed sophisticated system to defend themselves against microbial attack. Since plants do not have specialized immune cells, all plant cells appear to have the innate ability to recognize pathogens and turn on an appropriate defense response. The plant innate immune system has two major branches: PAMPs (pathogen associated molecular patterns)-triggered immunity (PTI) and effector-triggered immunity (ETI). The ability to discriminate between self and non-self is a fundamental feature of living organisms, and it is a prerequisite for the activation of plant defenses specific to microbial infection. Arabidopsis cells express receptors that detect extracellular molecules or structures of the microbes, which are called collectively PAMPs and activate PTI. However, nucleotidebinding site leucine-rich repeats (NB-LRR) proteins mediated ETI is induced by direct or indirect recognition of effector molecules encoded by avr genes. In Arabidopsis, plasmamembrane localized multifunctional protein RIN4 (RPM1-interacting protein 4) plays important role in both PTI and ETI. Previous studies have suggested that RIN4 functions as a negative regulator of PTI. In addition, many different bacterial effector proteins modify RIN4 to destabilize plant immunity and several NB-LRR proteins, including RPM1 (resistance to Pseudomonas syringae pv. maculicola 1), RPS2 (resistance to P. syringae 2) guard RIN4. This review summarizes the current studies that have described signaling mechanism of RIN4 function, modification of RIN4 by bacterial effectors and different interacting partner of RIN4 in defense related pathway. In addition, the emerging role of the RIN4 in plant physiology and intercellular signaling as it presents in exosomes will be discussed.

Natural Killer and CD8 T Cells Contribute to Protection by Formalin Inactivated Respiratory Syncytial Virus Vaccination under a CD4-Deficient Condition

  • Eun-Ju Ko;Youri Lee;Young-Tae Lee;Hye Suk Hwang;Yoonsuh Park;Ki-Hye Kim;Sang-Moo Kang
    • IMMUNE NETWORK
    • /
    • v.20 no.6
    • /
    • pp.51.1-51.17
    • /
    • 2020
  • Respiratory syncytial virus (RSV) causes severe pulmonary disease in infants, young children, and the elderly. Formalin inactivated RSV (FI-RSV) vaccine trials failed due to vaccine enhanced respiratory disease, but the underlying immune mechanisms remain not fully understood. In this study, we have used wild type C57BL/6 and CD4 knockout (CD4KO) mouse models to better understand the roles of the CD4 T cells and cellular mechanisms responsible for enhanced respiratory disease after FI-RSV vaccination and RSV infection. Less eosinophil infiltration and lower pro-inflammatory cytokine production were observed in FI-RSV vaccinated CD4KO mice after RSV infection compared to FI-RSV vaccinated C57BL/6 mice. NK cells and cytokine-producing CD8 T cells were recruited at high levels in the airways of CD4KO mice, correlating with reduced respiratory disease. Depletion studies provided evidence that virus control was primarily mediated by NK cells whereas CD8 T cells contributed to IFN-γ production and less eosinophilic lung inflammation. This study demonstrated the differential roles of effector CD4 and CD8 T cells as well as NK cells, in networking with other inflammatory infiltrates in RSV disease in immune competent and CD4-deficient condition.

The Role of Nrf2 in Cellular Innate Immune Response to Inflammatory Injury

  • Kim, Ji-Young;Surh, Young-Joon
    • Toxicological Research
    • /
    • v.25 no.4
    • /
    • pp.159-173
    • /
    • 2009
  • Nuclear factor erythroid derived 2-related factor-2 (Nrf2) is a master transcription regulator of antioxidant and cytoprotective proteins that mediate cellular defense against oxidative and inflammatory stresses. Disruption of cellular stress response by Nrf2 deficiency causes enhanced susceptibility to infection and related inflammatory diseases as a consequence of exacerbated immune-mediated hypersensitivity and autoimmunity. The cellular defense capacity potentiated by Nrf2 activation appears to balance the population of $CD4^+$ and $CD8^+$ of lymph node cells for proper innate immune responses. Nrf2 can negatively regulate the activation of pro-inflammatory signaling molecules such as p38 MAPK, NF-${\kappa}B$, and AP-1. Nrf2 subsequently functions to inhibit the production of pro-inflammatory mediators including cytokines, chemokines, cell adhesion molecules, matrix metalloproteinases, COX-2 and iNOS. Although not clearly elucidated, the antioxidative function of genes targeted by Nrf2 may cooperatively regulate the innate immune response and also repress the expression of pro-inflammatory mediators.

The Effect of Ramulus Cinnamomum Aqua - acupuncture on The Cellular Immune Responses to LPS Induced Arthritis in Mice (계지약침자극(桂枝藥鍼刺戟)이 mouse의 LPS유발(誘發) 관절염(關節炎) 중 세포성면역반응(細胞性免疫反應)에 미치는 영향(影響))

  • Cho, Yoo-Haeng;Kim, Kap-Sung;Lee, Seung-Deok
    • Journal of Acupuncture Research
    • /
    • v.18 no.1
    • /
    • pp.100-112
    • /
    • 2001
  • Objective : The purpose of this study is to investigate the immunological effect of Ramulus Cinnamomum aqua-acupuncture on the cellular immune response in mice with LPS induced arthritis. Methods : All the BALB/C mice used in this study were bred and maintaned in our pathogen-free mouse colony and were 6wk of age at the start of the experiment. The experimental model of arthritis was induced by injeciton of 300${\mu}g$/kg LPS in mice knee joint. Ramulus Cinnamomum aqua-acupuncture was injected into Yangnungchon(Gb34) of mice 2daily for 14days. Immunohistochemical analysis was carried out to assess CD4+, CD8+, CD11b, IL-$1{\beta}$, IL-2R and CD106 expression in common iliac lymph nodes and synovial menbrane after stimulation with Ramulus Cinnamomum. Electron microscopy was carried out to assess change of synovial membrane. Ramulus Cinnamomum aqua-acupuncture stimulation group was compared to control group and non stimutated with aqua-acupuncture. Resutts : At day 14 post arthritis onset, Immunohistological studies using monoclonal antibodies showed that Ramulus Cinnamomum aqua-acupuncture goup had decreased expression of CD4+, CD8+, CD11b, IL-$1{\beta}$, IL-2R and CD106 at common illiac lymph nodes and synovial membrane compared with control group. Conclusions : Ramulus Cinnamomum aqua-acupuncture stimulation inhibited the development of cellular immunity to LPS-induced arthritis in mice. Thus, aqua-acupuncture stimulation may have preventive effects on autoimmune inflammatory joint diseases. The effects of AA on immune function and disease activity in patients with RA warrant further investigation.

  • PDF

Suppression of Primary Splenocyte Proliferation by Artemisia capillaris and Its Components

  • Lee, Hye Eun;Yang, Gabsik;Choi, Jae Sue;Lee, Joo Young
    • Toxicological Research
    • /
    • v.33 no.4
    • /
    • pp.283-290
    • /
    • 2017
  • The host immune system is the first line of host defense, consisting mainly of innate and adaptive immunity. Immunity must be maintained, orchestrated, and harmonized, since overactivation of immune responses can lead to inflammation and autoimmune diseases, while immune deficiency can lead to infectious diseases. We investigated the regulation of innate and adaptive immune cell activation by Artemisia capillaris and its components (ursolic acid, hyperoside, scopoletin, and scopolin). Macrophage phagocytic activity was determined using fluorescently labeled Escherichia coli, as an indicator of innate immune activation. Concanavalin A (ConA)- and lipopolysaccharide (LPS)-induced splenocyte proliferation was analyzed as surrogate markers for cellular and humoral adaptive immunity, respectively. Neither A. capillaris water extract (WAC) nor ethanol extract (EAC) greatly inhibited macrophage phagocytic activity. In contrast, WAC suppressed ConA- and LPS-induced proliferation of primary mouse splenocytes in a dose-dependent manner. Similarly, EAC inhibited ConA- and LPS-induced splenocyte proliferation. Oral administration of WAC in mice decreased ConA- and LPS-induced splenocyte proliferation, while that of EAC suppressed LPS-induced splenocyte proliferation. Repeated administration of WAC in mice inhibited ConA- and LPS-induced splenocyte proliferation. Ursolic acid, scopoletin, and scopolin reduced ConA- and LPS-induced primary mouse splenocyte proliferation, while hyperoside did not show such activity. These results indicate that A. capillaris and its components, ursolic acid, scopoletin, and scopolin, suppress ConA- and LPS-induced adaptive immune cell activation. The results suggest that A. capillaris is useful as a regulator of adaptive immunity for diseases involving excessive immune response activation.

Harnessing the Power of IL-7 to Boost T Cell Immunity in Experimental and Clinical Immunotherapies

  • Jung-Hyun Park;Seung-Woo Lee;Donghoon Choi;Changhyung Lee;Young Chul Sung
    • IMMUNE NETWORK
    • /
    • v.24 no.1
    • /
    • pp.9.1-9.21
    • /
    • 2024
  • The cytokine IL-7 plays critical and nonredundant roles in T cell immunity so that the abundance and availability of IL-7 act as key regulatory mechanisms in T cell immunity. Importantly, IL-7 is not produced by T cells themselves but primarily by non-lymphoid lineage stromal cells and epithelial cells that are limited in their numbers. Thus, T cells depend on cell extrinsic IL-7, and the amount of in vivo IL-7 is considered a major factor in maximizing and maintaining the number of T cells in peripheral tissues. Moreover, IL-7 provides metabolic cues and promotes the survival of both naïve and memory T cells. Thus, IL-7 is also essential for the functional fitness of T cells. In this regard, there has been an extensive effort trying to increase the protein abundance of IL-7 in vivo, with the aim to augment T cell immunity and harness T cell functions in anti-tumor responses. Such approaches started under experimental animal models, but they recently culminated into clinical studies, with striking effects in re-establishing T cell immunity in immunocompromised patients, as well as boosting anti-tumor effects. Depending on the design, glycosylation, and the structure of recombinantly engineered IL-7 proteins and their mimetics, recombinant IL-7 molecules have shown dramatic differences in their stability, efficacy, cellular effects, and overall immune functions. The current review is aimed to summarize the past and present efforts in the field that led to clinical trials, and to highlight the therapeutical significance of IL-7 biology as a master regulator of T cell immunity.