• Title/Summary/Keyword: cell voltage

Search Result 2,426, Processing Time 0.034 seconds

A Study on PWM Converter and Inverter Drive System by a Fuel Cell Simulator (연료전지용 Simulator에 의한 PWM 컨버터/인버터 구동시스템에 관한 연구)

  • Gu J.S.;Lee T.W.;Kim J.T.;Won C.Y.;Kim C.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.701-706
    • /
    • 2003
  • Fuel cell is remarkable for one of the clean energy recently. But in the fuel cell case, it has characteristics with low voltage and high current. Therefore, for using domestic power, it should be changed to the power source with commercial voltage and frequency. In this paper fuel cell simulator having electrical characteristics is designed and constructed instead of fuel cell stack. Voltage generated from fuel cell is from 39V to 72V dc and should be boosted to 400v do for home appliances. A stand alone system including the inverter and DC/DC converter for the fuel cell is then proposed. Experimental result is used to support the analysis.

  • PDF

Effects of reactant gases on phosphoric acid fuel cell performance (인산형 연료전지의 발전성능에 미치는 반응기체 영향)

  • 송락현;김창수;신동렬
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.3
    • /
    • pp.374-379
    • /
    • 1996
  • Effects of reactant gas flow rates and starvation on phosphoric acid fuel cell performance were studied. As the reactant gas flow rates increased, the cell performance increased and then the cell maintained constant performance. The optimum flow rates of hydrogen, oxygen and air under galvanostatic condition of 150 mA/cm$_{2}$ are found to be 5cc/min cm$_{2}$ 5cc/min cm$_{2}$ and 15cc/min cm$_{2}$ at room temperature and 1 atm, respectively. Also the open circuit voltage of single cell decreased with increasing oxygen flow rate due probably to the decreased probably to the decreased oxygen pressure in the cathode side. Hydrogen and oxygen starvation resulted in voltage loss of about 5mV and 0-2mV, respectively. The voltage loss was independent of starvation time. These results were discussed from point of view of electrochemical reaction of the cell. (author). 9 refs., 8 figs.

  • PDF

A Study on the 3kW Fuel Cell Generation System (3kW급 연료전지 발전시스템에 관한 연구)

  • Jeong, Dong-Hyo;Park, Jae-Se
    • Proceedings of the KIEE Conference
    • /
    • 2005.10a
    • /
    • pp.75-78
    • /
    • 2005
  • Fuel cell is remarkable for one of the clean energy recently. But in the fuel cell case, it has characteristics with low voltage and high current. Therefore, for using domestic power, it should be changed to the power source with commercial voltage and frequency. In this paper fuel cell simulator having electrical characteristics is designed and constructed instead of fuel cell stack. Voltage generated from fuel cell is from 39V to 72V dc and should be boosted to 400V dc for home appliances. A stand alone system including the inverter and DC/DC converter for the fuel cell is then proposed. Simulation result is used to support the analysis.

  • PDF

Compensation Scheme for Output Voltage Distortion in Fuel Cell Stack with Internal Humidifier (내부 가습형 연료전지 스택의 출력전압 왜곡 보상기법)

  • Koo, Keun-Wan;Woo, Dong-Gyun;Joo, Dong-Myoung;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.37-44
    • /
    • 2013
  • In this paper, the characteristics of portable fuel cell system are introduced and the dynamic response of output voltage of fuel cell stack with internal humidifier is analyzed. When the output of the fuel cell (FC) stack is short-circuited for humidification, the output voltage of the FC stack rapidly drops. In order to maintain the load voltage in the required range, dynamic compensation methods are proposed: 1) installing a capacitor behind the output of the FC stack; 2) utilizing the bi-directional converter. Especially, bi-directional converter is used when short of the FC output is detected or predicted by algorithm using data which is measured during previous three cycles. These methods are simulated by PSIM 9.0, then experimental results from the fuel cell system prototype verify the validity of the proposed methods.

Multi-Phase Interleaved ZVT Boost Converter With a Single Soft-Switching Cell (단일 소프트 스위칭 셀을 가진 다상 Interleaved ZVT Boost 컨버터)

  • Lee, Joo-Seung;Hwang, Yun-Seong;Kang, Sung-Hyun;Kwon, Man-Jae;Jang, Eunsu;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.3
    • /
    • pp.247-255
    • /
    • 2022
  • This paper proposes a multiphase interleaved zero-voltage-transition boost converter with a single soft-switching cell for high-voltage DC-DC converter (HDC) of fuel cell systems. The proposed single soft-switching cell structure can reduce the system volume by minimizing the passive and active elements added even in the multiphase-interleaved structure. To analyze the feasibility of the proposed structure, this paper mathematically analyzes the operation modes of the converter with the proposed single soft-switching cell structure and presents guidelines for design and considerations. In addition, the feasibility of the 210[kW] HDC was confirmed through PSIM simulation, and the system volume reduction of up to 10.48% was confirmed as a result of the 5[kW] HDC test-bed experiment considering the fuel cell system. Through this, the validity of the proposed structure was verified.

Analysis of Current-voltage Characteristic Curve for the Solar Cell using MicroTec Tool (MicroTec을 이용한 태양전지 전류-전압 특성곡선 분석)

  • Jung, Hak-Kee;Han, Ji-Hyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.6
    • /
    • pp.1045-1050
    • /
    • 2009
  • The current-voltage characteristics of solar cell has been analyzed using MicroTec in this paper. The current-voltage characteristics represents a efficiency of solar cell. The part of metal contact is doped highly, but active region is doped lowly. We have investigated the current-voltage characteristics according to variation of doping concentration from $10^{14}cm^{-3}$ to $10^{17}cm^{-3}$. We has also determined the doping concentration to obtain the maximum efficiency of solar cell, and analyzed this current-voltage characteristics.

Enhancement of Cell Voltage Balancing Control by Zero Sequence Current Injection in a Cascaded H-Bridge STATCOM (STATCOM에서 영상분 전류주입에 의한 셀간 전압평형화 제어의 향상)

  • Kwon, Byung-Ki;Jung, Seung-Ki;Kim, Tae-Hyeong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.4
    • /
    • pp.321-329
    • /
    • 2015
  • The static synchronous compensator (STATCOM) of cascaded H-bridge configuration accompanying multiple separate DC sides is inherently subject to the problem of uneven DC voltages. These DC voltages in one leg can be controlled by adjusting the AC-side output voltage of each cell inverter, which is proportional to the active power. However, when the phase current is extremely small, large AC-side voltage is required to generate the active power to balance the cell voltages. In this study, an alternative zero-sequence current injection method is proposed, which facilitates effective cell balancing controllers at no load, and has no effect on the power grid because the injected zero sequence current only flows within the STATCOM delta circuit. The performance of the proposed method is verified through simulation and experiments.

THD Analysis of Output Voltage According to PWM Carriers in Single-Delta Bridge Cell MMC (Single-Delta Bridge Cell MMC의 전압합성을 위한 PWM 반송파 형태에 따른 출력전압의 THD 분석)

  • Jae-Myeong, Kim;Jae-Jung, Jung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.6
    • /
    • pp.526-534
    • /
    • 2022
  • The modular multilevel converter (MMC) has been widely applied to various industrial areas because of its various advantages and structural characteristics. Therefore, many methods for synthesizing the output voltage of MMC have been studied. Among these methods, phase-shifted pulse width modulation (PSPWM) is frequently used in MMC systems because it has diverse merits, such as excellent output qualities even with a small number of cells and uniform power distribution among cells. In this study, the total harmonic distortion (THD) of the output voltage is analyzed in accordance with the number of cells in one arm of a single-delta bridge cell MMC in order to compare PSPWM methods in terms of the THD of the output voltage. The physical characteristics of the triangle and sawtooth carrier waves used for the PSPWM and the mathematical modeling of output voltage are introduced. Then, the obtained results are verified through real-time simulation of a 1 MW single-delta bridge cell MMC system.

단결정 태양전지의 최적운전을 위한 전압-전류, 특성

  • Hong, Chang-U;Choe, Yong-Seong;Lee, Gyeong-Seop
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.10-10
    • /
    • 2010
  • The solar cell energy is considered as a clean energy source in the world. However, because the output of solar cell is not constant, it needs to study the relationships of the DC voltage, the DC current and the DC power of the solar cell. This paper presents the solar cell output characteristics and the maximum power point of the solar cell under different irradiation conditions.

  • PDF

Dynamic Voltage Margin of AC PDP with the Narrow Erase Pulse Method (세폭소거 펄스 방식을 적용한 AC PDP에서의 동특성 전압 마진)

  • An, Yang-Ki;Yoon, Dong-Han
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.11
    • /
    • pp.541-545
    • /
    • 2002
  • This paper proposes the new narrow erase method to erase wall charges formed in an AC plasma display panel (PDP) cell. In the proposed method, pulse timing of switch at the sustain period is adjusted for inducing, a weak discharge. Then, after the narrow erase, the voltage of the X electrode is set to differ from that of the Y electrode. For the proposed method, the measured maximum address voltage margin was 38.3V at Y_Rest voltage of 100V and sustain voltage of 180${\sim}$185V. However, for the conventional method, in which the X and Y electrodes are set to be of equal voltage after the narrow erase, the measured maximum address voltage margin was 31.3V at Y_Rest voltage of 150V and sustain voltage of 180V. This result shows that the measured maximum voltage margin for the proposed method is about 7V(22%) higher than that for the conventional method.