• 제목/요약/키워드: cell surface molecule

검색결과 114건 처리시간 0.031초

γ-Irradiation Induced Adhesion Molecules are Reduced by Vitamin C in Human Endothelial Cells

  • Son, Eun-Wha;Kim, Byung-Oh;Pyo, Suh-Kneung
    • Biomolecules & Therapeutics
    • /
    • 제12권3호
    • /
    • pp.145-150
    • /
    • 2004
  • Inflammation is a frequent radiation-induced reaction following therapeutic irradiation. Treatment of human umbilical endothelial cells (HUVEC) with ${\gamma}$-irradiation (${\gamma}$IR) induces the expression of adhesion proteins such as intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin. Since the upregulation of these proteins on endothelial cell Surface has been known to be associated with inflammation, interfering with the expression of adhesion molecules is an important therapeutic target. In the present study, we demonstrate that vitamin C inhibits ${\gamma}$IR induced expression of ICAM-1, VCAM-1, and E-selectin on HUVEC in a dose- and time dependent manner. Vitamin C a1so inhibited the production of Nitric oxide (NO) induced by ${\gamma}$IR. These data suggest that vitamin C has therapeutic potential for the treatment of various inflammatory disorder associated with an increase of endothelial leukocyte adhesion molecules.

Identification of Amino Acid Residues Involved in the Interaction between Measles Virus Haemagglutin (MVH) and Its Human Cell Receptor(Signaling Lymphocyte Activation Molecule, SLAM)

  • Xu, Qin;Zhang, Peng;Hu, Chunling;Liu, Xin;Qi, Yipeng;Liu, Yingle
    • BMB Reports
    • /
    • 제39권4호
    • /
    • pp.406-411
    • /
    • 2006
  • Signaling lymphocyte activation molecule (SLAM; also known as CD150) is a newly identified cellular receptor for measles virus (MV). The interaction between MV Haemagglutin (MVH) and SLAM is an initial step for MV entry. We have identified several novel SLAM binding sites at residues S429, T436 and H437 of MVH protein and MVH mutants in these residues dramatically decrease the ability to interaction with the cell surface SLAM and fail to co-precipitation with SLAM in vivo as well as malfunction in syncytium formation. At the same time, K58, S59 and H61 of SLAM was also identified to be critical for MVH and SLAM binding. Further, these residues may be useful targets for the development of measles therapy.

교모세포종 U-251MG, U-373MG세포주의 Cytokines처리에 의한 세포내 ICAM-1 발현 (Cytokine Induction of Intercellular Adhesion Molecule-1(ICAM-1) Expression on Human Glioblastoma Cell Line, U-251 MG, U-373 MG)

  • 이종원;권정택;민병국;박승원;김영백;황성남;석종식;최덕영
    • Journal of Korean Neurosurgical Society
    • /
    • 제29권4호
    • /
    • pp.477-484
    • /
    • 2000
  • Objective : Despite advances in the understanding of tumor biology and the tumor immunology, there has been no effective treatment. The Intercellular adhesion molecule-1(ICAM-1) has been shown to be important in interaction involving cells of the immune system and to be upregulated in a number of cell culture systems by cytokines, including immune interferon($IFN-{\gamma}$) and tumor necrosis $factor-{\alpha}$($TNF-{\alpha}$). ICAM-1 has been identified as one of the ligands for lymphocyte function-associated antigen-1(LFA-1). The effectiveness of various cytokines to ICAM-1 induction on cultured human glioblastoma cell lines and potential efficacy of immunotherapy were studied. Method : Human glioblastoma cell lines, U-251 MG, U-373 MG were trypsinized and suspended at $1{\times}10^5cells/ml$ and grown on 8 well chamber slide, the cells were incubated in 0.3ml medium alone or medium containing $IFN-{\gamma}$(1000U/ml) or $TNF-{\alpha}$(250U/ml) or $IFN-{\gamma}$ plus $TNF-{\alpha}$ for 6, 12, 24, 48 and 72 hours. The coverslip were then removed and stained with a 1/30 dilution of anti-ICAM-1 antibody. Result : Surface antigen expression of ICAM-1 was increased by incubating glioblastoma cell lines with $IFN-{\gamma}$ and $TNF-{\alpha}$. Combined effect of $IFN-{\gamma}$ and $TNF-{\alpha}$ has induced more ICAM-1 expression on glioblastoma cell lines. Upregulation of ICAM-1 expression in an established glioblastoma cell line was of greater magnitude and more rapid following incubation with $IFN-{\gamma}$ plus $TNF-{\alpha}$. Surface antigen expression of ICAM-1 was increased for up to 48 hours after cytokine treatment on both cell lines(p<0.05). There was no difference on both cell lines(p>0.05). Conclusion : The results of the present study indicate that ICAM-1 expression in glioblastoma cell lines, U-251 MG and U-373 MG, are induced and enhanced after treatment with $IFN-{\gamma}$ and $TNF-{\alpha}$. Combined effect of $IFN-{\alpha}$ and $TNF-{\gamma}$ is stronger and more rapid than $IFN-{\gamma}$ or $TNF-{\alpha}$ alone.

  • PDF

BAY11-7082에 의한 U937 세포의 CD29-매개성 세포간 유착과정 조절 효과 (Modulatory Effect of BAY11-7082 on CD29-mediated Cell-cell Adhesion in Monocytic U937 Cells)

  • 김병훈;조재열
    • 약학회지
    • /
    • 제52권5호
    • /
    • pp.412-417
    • /
    • 2008
  • BAY11-7082 was initially found to be an anti-inflammatory drug with NF-${\kappa}B$ inhibitory property. In this study, we evaluated modulatory function of BAY11-7082 on U937 cell-cell adhesion induced by CD29 (${\beta}1$-integrins). BAY11-7082 strongly blocked functional activation of CD29 (${\beta}1$-integrins), as assessed by cell-cell adhesion assay. However, this compound did not block a simple activation of CD29, as assessed by cell-fibronectin adhesion assay. In particular, to understand molecular mechanism of BAY11-7082-mediated inhibition, the regulatory roles of CD29-induced actin cytoskeleton rearrangement under cell-cell adhesion and surface level of CD29 were examined using confocal and flow cytometic analysis. Interestingly, this compound strongly suppressed the molecular association of actin cytoskeleton with CD29 at cell-cell adhesion site. Moreover, BAY11-7082 also diminished surface levels of CD29 as well as its-associated adhesion molecule CD147, but not other adhesion molecules such as CD18 and CD43. Therefore, our data suggest that BAY11-7082 may be involved in regulating immune responses managed by CD29-mediated cell-cell adhesion.

CTLA-4 항원의 세포막 도달 기작에서 친수성 N말단 아미노산 잔기의 역할 (Role of N-terminal Hydrophilic Amino Acids in Molecular Translocation of CTLA-4 to Cell Surface)

  • 한지웅;이혜자;김진미;최은영;정현주;임수빈;최장원;정용훈
    • IMMUNE NETWORK
    • /
    • 제2권2호
    • /
    • pp.102-108
    • /
    • 2002
  • Background: This study was aimed to differentiate two forms of CTLA-4 (CD152) in activated peripheral blood lymphocyte and clarify the mechanism how cytoplasmic form of this molecule is targeted to cell surface. Methods: For this purpose we generated 2 different anti-human CD152 peptide antibodies and 5 different N'-terminal deletion mutant CTLA4Ig fusion proteins and carried out a series of Western blot and ELISA analyses. Antipeptide antibodies made in this study were anti-CTLA4pB and anti-CTLA4pN. The former recognized a region on extracellular single V-like domain and the latter recognized N'-terminal sequence of leader domain of human CD152. Results: In Western blot, the former antibody recognized recombinant human CTLA4Ig fusion protein as an antigen. And this recognition was completely blocked by preincubating antipeptide antibody with the peptide used for the antibody generation at the peptide concentration of 200 ug/ml. These antibodies were recognized human CD152 as a cytoplasmic sequestered- and a membrane bound- forms in phytohemagglutinin (PHA)-stimulated peripheral blood lymphocyte (PBL). These two forms of CD152 were further differentiated by using anti-CTLA4pN and anti-CTLA4pB antibodies such that former recognized cytosolic form only while latter recognized both cytoplasmic- and membraneforms of this molecule. Furthermore, in a transfection expression study of 5 different N'-terminal deletion mutant CTLA4Ig, mutated proteins were secreted out from transfected cell surface only when more than 6 amino acids from N'-terminal were deleted. Conclusion: Our results implies that cytosolic form of CTLA-4 has leader sequence while membrane form of this molecule does not. And also suggested is that at least N'-terminal 6 amino acid residues of human CTLA-4 are required for regulation of targeting this molecule from cytosolic- to membrane- area of activated human peripheral blood T lymphocyte.

Natural killer T cell and pathophysiology of asthma

  • Jang, Gwang Cheon
    • Clinical and Experimental Pediatrics
    • /
    • 제53권2호
    • /
    • pp.136-145
    • /
    • 2010
  • Natural killer T (NKT) cell is a special type of T lymphocytes that has both receptor of natural killer (NK) cell (NK1.1, CD161c) and T cell (TCR) and express a conserved or invariant T cell receptor called $V{\alpha}14J{\alpha}18$ in mice or Va24 in humans. Invariant NKT (iNKT) cell recognizes lipid antigen presented by CD1d molecules. Marine-sponge-derived glycolipid, ${\alpha}-galactosylceremide$ (${\alpha}-GalCer$), binds CD1d at the cell surface of antigen-presenting cells and is presented to iNKT cells. Within hours, iNKT cells become activated and start to secrete Interleukin-4 and $interferon-{\gamma}$. NKT cell prevents autoimmune diseases, such as type 1 diabetes, experimental allergic encephalomyelitis, systemic lupus erythematous, inflammatory colitis, and Graves' thyroiditis, by activation with ${\alpha}-GalCer$. In addition, NKT cell is associated with infectious diseases by mycobacteria, leshmania, and virus. Moreover NKT cell is associated with asthma, especially CD4+ iNKT cells. In this review, I will discuss the characteristics of NKT cell and the association with inflammatory diseases, especially asthma.

Depletion of Cytoplasmic Tail of UL18 Enhances and Stabilizes the Surface Expression of UL18

  • Kim, Jung-Sik;Kim, Bon-Gi;Yoon, Il-Hee;Kim, Sang-Joon;Park, Chung-Gyu
    • IMMUNE NETWORK
    • /
    • 제8권4호
    • /
    • pp.130-136
    • /
    • 2008
  • Background: Human cytomegalovirus UL18, a MHC class I homologue, has been considered a natural killer (NK) cell decoy. It ligates LIR-1/ILT2 (CD85j), an NK inhibitory receptor, to prevent lysis of infected target cells. However, precise role of UL18 to NK cell cytotoxicity is yet elusive. Difficulty in clarifying the function of UL18 lies in complication in detecting UL18 mainly due to low level expression of UL18 on the surface and gradual loss of its expression. Methods: To overcome this hurdle, cDNA of cytoplasmic tail-less UL18 was constructed and expressed in swine endothelial cell (SEC). The expression level and its stability in the cell surface were monitored with FACS analysis. Results: Surface expression of UL18 is up-regulated by removing cytoplasmic tail portion from UL18F (a full sequence of UL18). SECs transfected with a cDNA of UL18CY (a cytoplasmic tail-less UL18) stably expressed UL18 molecule on the surface without gradual loss of its expression during 6 week continuous cultures. In the NK cytotoxicity assay, UL18 functions either inhibiting or activating NK cell cytotoxicity according to the source of NK cells. We found that there is individual susceptibility in determining whether the engagement of NK cell and UL18 results in overall inhibiting or activating NK cell cytotoxicity. Conclusion: In this study, we found that cytoplasmic tail is closely related to the regulatory function for controlling surface expression of UL18. Furthermore, by constructing stable cell line in which UL18 expression is up-regulated and stable, we provided a useful tool to clarify exact functions of UL18 on various immune cells having ILT2 receptor.

Magnetism during adsorption of oxygen in Pt segregated $Pt_3Ni$ (111): Density Functional Study

  • Kumar, Sharma Bharat;Kwon, O-Ryong;Odkhuu, Dorj;Hong, Soon-Cheol
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2011년도 자성 및 자성재료 국제학술대회
    • /
    • pp.14-14
    • /
    • 2011
  • Limited understanding of the surface properties of $Pt_3Ni$ for the oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cell (PEMFC) has motivated the study of magnetic properties and electronic structures of Pt segregated $Pt_3Ni$ (111) surface during adsorption of oxygen molecule on it. The first principle method based on density functional theory (DFT) is carried out. Nonmagnetic Pt has induced magnetic moment due to strong hybridization between Ni 3d and Pt 5d. It is found that an oxygen molecule prefers bridge site with Pt rich subsurface environment for adsorption on the surface of Pt segregated $Pt_3Ni$ (111). It is seen that there is very small charge transfer from $O_2$ to Pt. The curve of energy versus magnetic moment of the oxygen explains the magnetic moments in transition states. We found the dissociation barrier of 1.07eV significantly higher than dissociation barrier 0.77eV on Pt (111) suggesting that the dissociation is more difficult on Pt segregated $Pt_3Ni$ (111) surface. The spin polarized densities of states are presented in order to understand electronic structures of Pt and $O_2$ during the adsorption in detail.

  • PDF

Genetic heterogeneity of liver cancer stem cells

  • Minjeong Kim;Kwang-Woo Jo;Hyojin Kim;Myoung-Eun Han;Sae-Ock Oh
    • Anatomy and Cell Biology
    • /
    • 제56권1호
    • /
    • pp.94-108
    • /
    • 2023
  • Cancer cell heterogeneity is a serious problem in the control of tumor progression because it can cause chemoresistance and metastasis. Heterogeneity can be generated by various mechanisms, including genetic evolution of cancer cells, cancer stem cells (CSCs), and niche heterogeneity. Because the genetic heterogeneity of CSCs has been poorly characterized, the genetic mutation status of CSCs was examined using Exome-Seq and RNA-Seq data of liver cancer. Here we show that different surface markers for liver cancer stem cells (LCSCs) showed a unique propensity for genetic mutations. Cluster of differentiation 133 (CD133)-positive cells showed frequent mutations in the IRF2, BAP1, and ERBB3 genes. However, leucine-rich repeat-containing G protein-coupled receptor 5-positive cells showed frequent mutations in the CTNNB1, RELN, and ROBO1 genes. In addition, some genetic mutations were frequently observed irrespective of the surface markers for LCSCs. BAP1 mutations was frequently observed in CD133-, CD24-, CD13-, CD90-, epithelial cell adhesion molecule-, or keratin 19-positive LCSCs. ASXL2, ERBB3, IRF2, TLX3, CPS1, and NFATC2 mutations were observed in more than three types of LCSCs, suggesting that common mechanisms for the development of these LCSCs. The present study provides genetic heterogeneity depending on the surface markers for LCSCs. The genetic heterogeneity of LCSCs should be considered in the development of LCSC-targeting therapeutics.

Homozygous Missense Epithelial Cell Adhesion Molecule Variant in a Patient with Congenital Tufting Enteropathy and Literature Review

  • Guvenoglu, Merve;Simsek-Kiper, Pelin Ozlem;Kosukcu, Can;Taskiran, Ekim Z.;Saltik-Temizel, Inci Nur;Gucer, Safak;Utine, Eda;Boduroglu, Koray
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • 제25권6호
    • /
    • pp.441-452
    • /
    • 2022
  • Congenital diarrheal disorders (CDDs) with genetic etiology are uncommon hereditary intestinal diseases characterized by chronic, life-threatening, intractable watery diarrhea that starts in infancy. CDDs can be mechanistically divided into osmotic and secretory diarrhea. Congenital tufting enteropathy (CTE), also known as intestinal epithelial dysplasia, is a type of secretory CDD. CTE is a rare autosomal recessive enteropathy that presents with intractable neonatal-onset diarrhea, intestinal failure, severe malnutrition, and parenteral nutrition dependence. Villous atrophy of the intestinal epithelium, crypt hyperplasia, and irregularity of surface enterocytes are the specific pathological findings of CTE. The small intestine and occasionally the colonic mucosa include focal epithelial tufts. In 2008, Sivagnanam et al. discovered that mutations in the epithelial cell adhesion molecule (EpCAM, MIM# 185535) were the genetic cause of CTE (MIM# 613217). More than a hundred mutations have been reported to date. Furthermore, mutations in the serine peptidase inhibitor Kunitz type 2 (SPINT2, MIM# 605124) have been linked to syndromic CTE. In this study, we report the case of a 17-month-old male infant with congenital diarrhea. Despite extensive etiological workup, no etiology could be established before admission to our center. The patient died 15 hours after being admitted to our center in a metabolically decompensated state, probably due to a delay in admission and diagnosis. Molecular autopsy with exome sequencing revealed a previously reported homozygous missense variant, c.757G>A, in EpCAM, which was confirmed by histopathological examination.