• 제목/요약/키워드: cell stability

검색결과 1,458건 처리시간 0.026초

Regulation of Nek6 Functions by Its SUMOylation on the $K^{252}$ Residue

  • Lee, Eun-Jeoung;Hyun, Sung-Hee;Chun, Jae-Sun;Shin, Sung-Hwa;Lee, Kyung-Eun;Park, In-Suk;Kang, Sang-Sun
    • Animal cells and systems
    • /
    • 제11권2호
    • /
    • pp.205-213
    • /
    • 2007
  • Nek6 belongs to NIMA1 (never in mitosis, gene A) related kinase, which was originally identified in Aspergillus nidulans as a serine/threonine kinase critical for cell cycle progression. We noticed that the putative SUMOylation site is localized on the $K^{252}$ residue in $^{251}FKsD^{254}$ of Nek6, based on the consensus sequence ${\Phi}KxE$; where ${\Phi}$ represents L, I, V or F and x is any amino acid. We observed that the Nek6 SUMO mutant (K252R) has decreased protein kinase activity, nuclear speckle localization and protein stability, compared with that of the Nek6 wild type. However, the Nek6 SUMO mutant increased the cell survival rate of COS-1 cells as determined by FACS analysis. Therefore, our data suggest that SUMOylation on the $K^{252}$ residue of Nek6 is required for its normal functions, such as proper nuclear localization, kinase activity and protein stability, to control cell cycle.

로즈마리를 첨가만 유지 코팅 생약제 환의 품질안정성 (Quality Stability of the Herb Pill Coated with Edible Oils Containing Rosemary Essential Oil)

  • 곽이성;주종재
    • 한국식생활문화학회지
    • /
    • 제18권2호
    • /
    • pp.134-138
    • /
    • 2003
  • Quality stability of the herb pill coated with edible oils containing rosemary was investigated. Herb pills were made of herb powders such as Panax ginseng, Cinnamomum cassia, Lycium chinense, Zyzyphus jujuba and Zingiber officinale. Rapeseed oil and lubriol were used as edible coating oil. After herb pills coated with edible oils with or without rosemary were stored at $40^{\circ}C$ for 180 days, the microbial viable cell counts and peroxide values(POV) of the herb pill were investigated. After 180 day storage, POVs of herb pills with only rapeseed oil or lubriol were 0.51 and 0.49 meq/kg, respectively. However, when rosemary was added in herb pills the POVs were decreased to 0.30 and 0.39 meq/kg, respectively. The addition of rosemary to the rapeseed oil and lubriol tended to decrease the microbial viable cell counts of the herb pill. The microbial viable cell counts of rapeseed oil and lubriol were 940 and 820CFU/g, respectively after 180 days of storage. However, these levels were suppressed to 720 and 640CFU/g by the resemary addition. On the other hand, the ginseng saponin content of herb pills was not affected by the rosemary addition during storage.

연료전지 자동차 내 수소 공급 시스템에서 드레인 밸브 특성에 따른 드레인 로직 최적화 및 연비와 운전안정성을 고려한 물 관리 전략 개발 (Optimization of Condensate Water Drain Logic Depending on the Characteristics of Drain Valve in FPS of Fuel Cell Vehicle and Development of Anode Water Management Strategy to Achieve High Fuel Efficiency and Operational Stability)

  • 안득균;이현재;심효섭;김대종
    • 한국수소및신에너지학회논문집
    • /
    • 제27권2호
    • /
    • pp.155-162
    • /
    • 2016
  • A proton exchange membrane fuel cell (PEMFC) produces only water at cathode by an electrochemical reaction between hydrogen and oxygen. The generated water is transported across the membrane from the cathode to the anode. The transported water collected in water-trap and drained to the cathode within the humidifier outlet. If the condensate water is not being drained at the appropriate time, condensate water in the anode can cause the performance degradation or fuel efficiency degradation of fuel cell by the anode flooding or unnecessary hydrogen discharge. In this study, we proposed an optimization method of condensate water drain logic for the water drain performance and the water drain algorithm as considered the condensate water generating speed prep emergency case. In conclusion, we developed the water management strategy of fuel processing system (FPS) as securing fuel efficiency and operating stability.

개질기용 Anode Off Gas의 연소특성에 관한 연구 (Combustion Characteristic of Anode Off Gas for Fuel Cell Reformer)

  • 이필형;황상순
    • 한국연소학회지
    • /
    • 제17권4호
    • /
    • pp.5-10
    • /
    • 2012
  • The reformer system is a chemical device that drives the conversion of hydrocarbon to hydrogen rich gas under high temperature environment($600-1,000^{\circ}C$). Generally, NG(Natural Gas) or AOG(Anode Off Gas) is used as fuel of fuel cell reformer combustion system. The experimental study to analyze the combustion characteristics of a premixed ceramic burner used for 0.5-1.0 kW fuel cell reformer was performed. Ceramic burner experiments using NG and AOG were carried out to investigate the flame stability characteristics by heating capacity, equivalence ratio and different fuels respectively. The results show that surface flames can be classified into green, red, blue and lift-off flames as the equivalence ratio of methane-air mixture decreases. And the stable flames can be established using NG and AOG as reformer fuel in the perforated ceramic burner. In particular, the blue flame is found to be stable at a lean equivalence ratio under different mixture conditions of NG and AOG for the 0.5 to 1.0 kW fuel cell system power range. NOx emission is under 60 ppm between 0.70 to 0.78 of equivalence ratio and CO emission is under 50 ppm between 0.70 to 0.84 of equivalence ratio.

A Simple Power Management Scheme with Enhanced Stability for a Solar PV/Wind/Fuel Cell Fed Standalone Hybrid Power Supply using Embedded and Neural Network Controller

  • Thangavel, S.;Saravanan, S.
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권5호
    • /
    • pp.1454-1470
    • /
    • 2014
  • This paper propose a new power conditioner topology with intelligent power management controller that integrates multiple renewable energy sources such as solar energy, wind energy and fuel cell energy with battery backup to make best use of their operating characteristics and obtain better reliability than that could be obtained by single renewable energy based power supply. The proposed embedded controller is programmed for maintaining a constant voltage at PCC, maximum power point tracking for solar PV panel and WTG and power flow control by regulating the reference currents of the controller on instantaneous basis based on the power delivered by the sources and load demand. Instantaneous variation in reference currents of the controller enhances the controller response as it accommodates the effect of continuously varying solar insolation and wind speed in the power management. The power conditioner uses a battery bank with embedded controller based online SOC estimation and battery charging system to suitably sink or source the input power based on the load demand. The simulation results of the proposed power management system for a standalone solar/WTG/fuel cell fed hybrid power supply with real time solar radiation and wind velocity data collected from solar centre, KEC for a sporadically varying load demand is presented in this paper and the results are encouraging in reliability and stability perspective.

Ubiquitin E3 ligases controlling p53 stability

  • Lee, Seong-Won;Seong, Min-Woo;Jeon, Young-Joo;Chung, Chin-Ha
    • Animal cells and systems
    • /
    • 제16권3호
    • /
    • pp.173-182
    • /
    • 2012
  • The p53 protein plays a pivotal role in tumor suppression. The cellular level of p53 is normally kept low by proteasome-mediated degradation, allowing cell cycle progression and cell proliferation. Under stress conditions, such as DNA damage, p53 is stabilized and activated through various post-translational modifications of itself as well as of its regulatory proteins for induction of the downstream genes responsible for cell cycle arrest, DNA repair, and apoptosis. Therefore, the level of p53 should be tightly regulated for normal cell growth and for prevention of the accumulation of mutations in DNA under stress conditions, which otherwise would lead to tumorigenesis. Since the discovery of Mdm2, a critical ubiquitin E3 ligase that destabilizes p53 in mammalian cells, nearly 20 different E3 ligases have been identified and shown to function in the control of stability, nuclear export, translocation to chromatin or nuclear foci, and oligomerization of p53. So far, a large number of excellent reviews have been published on the control of p53 function in various aspects. Therefore, this review will focus only on mammalian ubiquitin E3 ligases that mediate proteasome-dependent degradation of p53.

Solar Cell Wafer용 Squaring & Grinding Machine의 진동 억제를 위한 설계 변경 (Design Alterations of a Squaring & Grinding Machine for the Solar Cell Wafer to Suppress Vibrations)

  • 신호범;노승훈;윤현진;길사근;김영조;김건형;한대성
    • 반도체디스플레이기술학회지
    • /
    • 제16권3호
    • /
    • pp.47-52
    • /
    • 2017
  • Solar cell industry requires high technologies to stabilize apparatuses for the wafer manufacturing. Vibrations of squaring & grinding machines are one of the most critical factors for causing residual stresses of ingots, which are the main reasons of the breakage in the following processes such as wire sawing, cleaning, and modularity. In this study, the structure of a squaring & grinding machine has been analyzed through experiments and computer simulations to figure out the ways to suppress the vibrations effectively, and further to minimize the breakage of wafers. The result shows that simple design changes of applying a few ribs can improve the stability of the machine.

  • PDF

고집적 SRAM Cell의 동작안정화에 관한 연구 (A Study on the Stability of High Density SRAM Cell))

  • Choi, Jin-Young
    • 전자공학회논문지A
    • /
    • 제32A권11호
    • /
    • pp.71-78
    • /
    • 1995
  • Based on the popular 4-transistor SRAM cell, an analytical expression of the minimum cell ratio was derived by modeling the static read operation. By analyzing the relatively simple expression for the minimum cell ratio, which was derived assuming the ideal transistor characteristics, effects of the changes in supply voltage and process parameters on the minimum cell ratio was predicted, and the minimum power supply voltage for read operation was determined. The results were verified by simulations utilizing the suggested simulation method, which is suitable for monitoring the lower limit of supply voltage for proper cell operation. From the analysis, it was shown that the worst condition for cell operation is low temperature and low supply voltage, and that the operation margin can be effectively improved by reducing the threshold voltage of the cell transistors.

  • PDF

Comparative study of linear and cyclic forms of apoptosis-targeting peptide

  • Ha, Yeong Su;Soni, Nisarg;Huynh, Phuong Tu;Lee, Byung-Heon;An, Gwang Il;Yoo, Jeongsoo
    • 대한방사성의약품학회지
    • /
    • 제2권2호
    • /
    • pp.96-102
    • /
    • 2016
  • Apoptosis, a genetically determined process of programmed cell death, is considered a vital component of various processes including normal cell turnover, animal development, and tissue homeostasis. It has a crucial role in many medical disorders and hence the development of non-invasive imaging tool is highly demanded. Recently, we have developed a peptide-based radioactive probe (ApoPep-1) for apoptosis detection. In that work the potential of probe for apoptosis detection was verified, however in vivo stability of radiolabeled peptide was not enough to monitor apoptosis for extended period. In current study, we prepared cyclic ApoPep-1 peptides to improve the stability of origianl linear ApoPep-1 and carried out direct comparison studies in vitro and in vivo. A targeting efficacy of newly synthesized cyclic ApoPep-1 peptide for apoptosis was confirmed in acute myocardial infarct model.

Oligomeric Structures Determine the Biochemical Characteristics of Human Nucleoside Diphosphate Kinases

  • Kim, Sun-Young;Song, Eun-Joo;Chang, Keun-Hye;Kim, Eun-Hee;Chae, Suhn-Kee;Lee, Han-Soo;Lee, Kong-Joo
    • BMB Reports
    • /
    • 제34권4호
    • /
    • pp.355-364
    • /
    • 2001
  • Major human Nucleoside diphosphate kinases (NDPKs) exist as hetero-oligomers, consisting of NDPK-A and NDPK-B, rather than homo-oligomer. To investigate their biological function depending on the oligomeric structure in vivo, we characterized the biochemical properties of cellular NDPK. Cellular NDPKs, which are made up of a unique combination of isoforms, were purified from human erythrocyte and placenta. We found that cellular NDPK and recombinant isoforms NDPKs have their own distinct biochemical properties in autophosphorylation, stability toward heat or urea, and DNA binding. Cellular NDPK was found to have unique characteristics rather than the expected additive properties of recombinant isoforms. The mutations in the dimeric interface of NDPK-B (R34G, N69H or K135L) caused defective DNA binding and simultaneously reduced the enzymatic stability These results suggest that the oligomeric interaction could play a major role in the stability of catalytic domain and might be related to the regulation of various cellular functions of NDPK.

  • PDF