• Title/Summary/Keyword: cell shape

Search Result 1,211, Processing Time 0.029 seconds

3D Shape Reconstruction using the Focus Estimator Value from Multi-Focus Cell Images (다초점 세포 영상으로부터 추정된 초점 값을 이용한 3차원 형태 복원)

  • Choi, Yea-Jun;Lee, Dong-Woo;Kim, Myoung-Hee;Choi, Soo-Mi
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.4
    • /
    • pp.31-40
    • /
    • 2017
  • As 3D cell culture has recently become possible, it has been able to observe a 3D shape of cell and volume. Generally, 3D information of a cell should be observed with a special microscope such as a confocal microscope or an electron microscope. However, a confocal microscope is more expensive than a conventional microscope and takes longer time to capture images. Therefore, there is a need for a method that can reconstruct the 3D shape of cells using a common microscope. In this paper, we propose a method of reconstructing 3D cells using the focus estimator value from multi-focal fluorescence images of cells. Initially, 3D cultured cells are captured with an optical microscope by changing the focus. Then the approximate position of the cells is assigned as ROI (Region Of Interest) using the circular Hough transform in the images. The MSBF (Modified Sliding Band Filter) is applied to the obtained ROI to extract the outlines of the cell clusters, and the focus estimator values are computed based on the extracted outlines. Using the computed focus estimator values and the numerical aperture (NA) of the microscope, we extract the outline of the cell cluster considering the depth and reconstruct the cells into 3D based on the extracted outline. The reconstruction results are examined by comparing with the combined in-focus portions of the cell images.

Molecular Biodesign of Plant Leaves and Flowers

  • Kim Gyung-Tae
    • Journal of Plant Biotechnology
    • /
    • v.5 no.3
    • /
    • pp.137-142
    • /
    • 2003
  • The morphology of the leaves and the flowers of angiosperms exhibit remarkable diversity. One of the factors showing the greatest variability of leaf organs is the leaf index, namely, the ratio of leaf length to leaf width. In some cases, different varieties of a single species or closely related species can be distinguished by differences in leaf index. To some extent, the leaf index reflects the morphological adaptation of leaves to a particular environment. In addition, the growth of leaf organs is dependent on the extent of the expansion of leaf cells and on cell proliferation in the cellular level. The rates of the division and enlargement of leaf cells at each stage contribute to the final shape of the leaf, and play important roles throughout leaf development. Thus, the control of leaf shape is related to the control of the shape of cells and the size of cells within the leaf. The shape of flower also reflects the shape of leaf, since floral organs are thought to be a derivative of leaf organs. No good tools have been available for studies of the mechanisms that underlie such biodiversity. However, we have recently obtained some information about molecular mechanisms of leaf morphogenesis as a result of studies of leaves of the model plant, Arabidopsis thaliana. For example, the ANGUSTIFOLIA (AN) gene, a homolog of animal CtBP genes, controls leaf width. AN appears to regulate the polar elongation of leaf cells via control of the arrangement of cortical microtubules. By contrast, the ROTUNDIFOLIA3 (ROT3) gene controls leaf length via the biosynthesis of steroid(s). We provide here an overview of the biodiversity exhibited by the leaf index of angiosperms. Taken together, we can discuss on the possibility of the control of the shapes and size of plant organs by transgenic approaches with the results from basic researches. For example, transgenic plants that overexpressed a wildtype ROT3 gene had longer leaves than parent plants, without any changes in leaf width. Thus, The genes for leaf growth and development, such as ROT3 gene, should be useful tools for the biodesign of plant organs.

Molecular Biodesign of Plant Leaves and Flowers

  • Kim, Gyung-Tae
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2003.04a
    • /
    • pp.49-55
    • /
    • 2003
  • The morphology of the leaves and the flowers of angiosperms exhibit remarkable diversity. One of the factors showing the greatest variability of leaf organs is the leaf index, namely, the ratio of leaf length to leaf width. In some cases, different varieties of a single species or closely related species can be distinguished by differences in leaf index. To some extent, the leaf index reflects the morphological adaptation of leaves to a particular environment. In addition, the growth of leaf organs is dependent on the extent of the expansion of leaf cells and on cell proliferation in the cellular level. The rates of the division and enlargement of leaf cells at each stage contribute to the final shape of the leaf, and play important roles throughout leaf development. Thus, the control of leaf shape is related to the control of the shape of cells and the size of cells within the leaf. The shape of flower also reflects the shape of leaf, since floral organs are thought to be a derivative of leaf organs. No good tools have been available for studies of the mechanisms that underlie such biodiversity. However, we have recently obtained some information about molecular mechanisms of leaf morphogenesis as a result of studies of leaves of the model plant, Arabidopsis thaliana. For example, the ANGUSTIFOLIA (AN) gene, a homolog of animal CtBP genes, controls leaf width. AN appears to regulate the polar elongation of leaf cells via control of the arrangement of cortical microtubules. By contrast, the ROTUNDIFOLIA3 (ROT3) gene controls leaf length via the biosynthesis of steroid(s). We provide here an overview of the biodiversity exhibited by the leaf index of angiosperms. Taken together, we can discuss on the possibility of the control of the shapes and size of plant organs by transgenic approaches with the results from basic researches. For example, transgenic plants that overexpressed a wild-type ROT3 gene had longer leaves than parent plants, without any changes in leaf width. Thus, The genes for leaf growth and development, such as ROT3 gene, should be useful tools for the biodesign of plant organs.

  • PDF

A NEW NUMERICAL APPROXIMATION OF DIFFUSION FLUX IN UNSTRUCTURED CELL-CENTERED METHOD (비정렬 셀 중심 방법에서 확산플럭스의 새로운 수치근사방법)

  • Myoung H.K.
    • Journal of computational fluids engineering
    • /
    • v.11 no.1 s.32
    • /
    • pp.8-15
    • /
    • 2006
  • The existing approximations of diffusion flux in unstructured cell-centered finite volume methods are examined in detail with each other and clarified to have indefinite expressions in several respects. A new numerical approximation of diffusion flux at cell face center is then proposed, which is second-order accurate even on irregular grids and may be easily implemented in CFD code using cell-centered finite volume method with unstructured grids composed of arbitrary convex polyhedral shape.

Cellular-level Biomechanics of Ultrasound (초음파의 세포 단위 생체역학)

  • Ohm, Won-Suk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.1E
    • /
    • pp.28-37
    • /
    • 2010
  • This article reviews recent developments in the emerging field of cellular-level biomedical ultrasonics with the specific focus on the mechanics of ultrasound-cell interaction. Due to the nature of the field at its relative infancy, the review poses more questions than it provides answers. Discussed are topics such as the basic structure of a biological cell, the origin of cell's elasticity, a theoretical framework for ultrasound-cell interaction, and shape deformation of cells and its measurement, Some interesting problems for future study are proposed.

Detergent Sensitivity of mrdA and mrdB Shape-Forming Mutants of Escherichia coli (대장균의 형태형성 변이주의 계면활성제 감수성)

  • Jun, Byoung-Kwon;Park, Sung-Dae;Lim, Si-Kyu;Park, Wan
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.5
    • /
    • pp.414-420
    • /
    • 1993
  • Escherichia coli mrdAts and mrdBts mutants forming spherical cells at 42C, were employed to investigate the possible role of both inner and outer membrance structures in the determination of cell shape of gram-negative cells. Spherical cells, but not rod-shaped wild types, were specifically killed by anionic detergents, such as sarkosyl, sodium dodecylsulfate and sodium deoxycholate. From the spherical intact cells grown overnight at 42C, much more proteins were released by sakosyl.

  • PDF

리엔트런트 패널의 전면볼록성에 대한 정량적 해석

  • Heo, Jeong-Min;Lee, Ji-Hwan
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.228-233
    • /
    • 2016
  • Auxetic material is a material which has negative Poisson's ratio(NPR). Auxetic material shows some distinctive property like high energy absorbing property and high shear modulus. Among these, synclastic curvature is very interesting characteristic. When synclastic-curvature-material bends, it changes its shape like dome, contrary to non-auxetic material which changes its shape like saddle(anticlastic). This distinctive property could make it easy to manufacture curved structure like nose cone or wing panel in aerospace engineering. In this study, we studied a quantitative analysis about synclastic curvature of re-entrant panel with finite element model. We suggested a concept 'Degree of Synclasticity(DOS)', which means a ratio of curvature of load-direction and load-orthogonal direction. We studied the variation of DOS with two factor, unit cell inner angle(${\theta}$) and load position angle(${\phi}$). DOS decreases as ${\theta}$ increases because the unit cell goes out of auxetic-shape. As ${\phi}$ varies, DOS changes in a large range. So proper optimization of ${\phi}$ would be needed for application.

  • PDF

Elementary School Teachers에 Conceptions on Cell (초등학교 교사들의 세포에 대한 개념)

  • 장명덕;송남희
    • Journal of Korean Elementary Science Education
    • /
    • v.17 no.2
    • /
    • pp.79-90
    • /
    • 1998
  • The purpose of this study is to investigate degree of the concept formation on cell in elementary school teachers and to clarify the patterns of their misconceptions. Data were collected by interview with 120 elementary school teachers, ranged from twenties to fifties in age, working in Taegu city. The instrument was developed by researchers and was categorized into four: cell as the basic units of life, morphology of cell, function of cell, growth of individual from the viewpoint of cell. The results are as follows: First, about 80% of teachers had two perspective outcome of cell: Cells are the basic units of life on earth. But the potato and meat, which we used to eat as food, are not constructed of cells but aggregated of nutrients. Second, most of elementary school teachers recognized that shapes of the cell in organisms were diverse, but some of them only could present several kinds of shape on cell. The 35% of teachers had misconception that shape of cell is all the same in a individual. It shows that this result is caused by lack of opportunity to observe the various kinds of cells. Third, most teachers understood tell can be seen only through a microscope. Yet in comparison with relative size, it was revealed that misconception of cell size was induced by the term of 'basic unit'. In addition, they thought that large organisms are built from large cells, and small organisms from small cells. Fourth, Elementary school teachers used to confuse the terms between chloroplast and chlorophyll, and believed that the genetic material was contained only in the reproductive cells and seeds. It was also revealed that they thought the nutrients such as starch and fat are located at intercellular space. Fifth, the 60% of teachers conceived correctly that growth of individual depends on mitosis and increase in cell number. The rest of them, however, misunderstood that it is due to the increase of tell volume.

  • PDF

The Effect of Laser Irridation on the Ultrastructure of Retina (Laser 조사가 망막의 미세구조에 미치는 영향)

  • Kim, Douk Hoon;Mun, Jung Hak
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.1 no.1
    • /
    • pp.15-22
    • /
    • 1996
  • The fine structure of retinal tissue was studied to investigate on effect of Laser irridation on the ICR mouse with electron microscope. The results obtained were as follows: 1. At the normal groups, the most retinal layers were a complex structure, consisting of several specific cells and nerve fiver. 2. In the increasing time of Laser irridation, each cell layer of retina was not uniform of the structure and band. The visual cells were severely heterochromatin swelling of cytoplasm, irregular shape & heterochromatin of nuclear, and disappear of some cytoplasm. The nucleus and nerve fiber of retinal layer was a very irregular shape, formation of vesicle, not identify of each intercellular boundary. The pigment epithelial cells were not an uniform, a large vesicle formation of cytoplasm, and a condensation & very irregular shape of nucleus.

  • PDF

Effects of Reducing Agents on Textural Changes and Protein Modification in Extruded Wheat Gluten (압출성형시 환원제 첨가에 의한 밀가루 글루텐의 조직 변화와 단백질의 변성)

  • 고봉경
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.6 no.2
    • /
    • pp.213-219
    • /
    • 1996
  • Addition of reducing agents during extrusion markedly affected physical and chemical properties of wheat flour and gluten extrudates. Expansion at the die was increased for wheat flour and gluten extrudates. Organic materials containing sulfur were evaporated as a flavor from gluten at the die and total sulfur contents were decreased. Physical shape was different for gluten extrudates without reducing agents. It was difficult to form the long strand of gluten extrudate without cooling die. Hydroquinone accelerated cell breakdown and produced more irregular shape of extrudate. However, addition of cysteine decreased the cell breakdown and produced the long strand of gluten extrudates. Chemical reactions of reducing agents such as cysteine and hydroquinone were different for high content (<80%) of wheat gluten. It was assumed that reducing agents donated hydrogen to inhibit the formation of disulfide crosslinking, decreased the dough strength and produced the broken cell and irregular shape of extrudates. Whereas, cysteine reacted as a binder as well as reducing agent and formed long strands. The evidence of reaction of reducing agents was shown from the fact that non-protein disulfide was increased and protein disulfide was slightly decreased from cysteine added gluten extrudate.

  • PDF