• Title/Summary/Keyword: cell segmentation

Search Result 103, Processing Time 0.029 seconds

Multi-cell Segmentation of Glioblastoma Combining Marker-based Watershed and Elliptic Fitting Method in Fluorescence Microscope Image (마커 제어 워터셰드와 타원 적합기법을 결합한 다중 교모세포종 분할)

  • Lee, Jiyoung;Jeong, Daeun;Lee, Hyunwoo;Yang, Sejung
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.4
    • /
    • pp.159-166
    • /
    • 2021
  • In order to analyze cell images, accurate segmentation of each cell is indispensable. However, the reality is that accurate cell image segmentation is not easy due to various noises, dense cells, and inconsistent shape of cells. Therefore, in this paper, we propose an algorithm that combines marker-based watershed segmentation and ellipse fitting method for glioblastoma cell segmentation. In the proposed algorithm, in order to solve the over-segmentation problem of the existing watershed method, the marker-based watershed technique is primarily performed through "seeding using local minima". In addition, as a second process, the concave point search using ellipse fitting for final segmentation based on the connection line between the concave points has been performed. To evaluate the performance of the proposed algorithm, we compared three algorithms with other algorithms along with the calculation of segmentation accuracy, and we applied the algorithm to other cell image data to check the generalization and propose a solution.

An Efficient Segmentation System for Cell Images By Classifying Distributions of Histogram (히스토그램 분포 분류를 통한 효율적인 세포 이미지 분할 시스템)

  • Cho, Migyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.2
    • /
    • pp.431-436
    • /
    • 2014
  • Cell segmentation which extracts cell objects from background is one of basic works in bio-imaging which analyze cell images acquired from live cells in cell culture. In the case of clear images, they have a bi-modal histogram distribution and segmentation of them can easily be performed by global threshold algorithm such as Otsu algorithm. But In the case of degraded images, it is difficult to get exact segmentation results. In this paper, we developed a cell segmentation system that it classify input images by the type of their histogram distribution and then apply a proper segmentation algorithm. If it has a bi-modal distribution, a global threshold algorithm is applied for segmentation. Otherwise it has a uni-modal distribution, our algorithm is performed. By experimentation, our system gave exact segmentation results for uni-modal cell images as well as bi-modal cell images.

Pyramidal Deep Neural Networks for the Accurate Segmentation and Counting of Cells in Microscopy Data

  • Vununu, Caleb;Kang, Kyung-Won;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.3
    • /
    • pp.335-348
    • /
    • 2019
  • Cell segmentation and counting represent one of the most important tasks required in order to provide an exhaustive understanding of biological images. Conventional features suffer the lack of spatial consistency by causing the joining of the cells and, thus, complicating the cell counting task. We propose, in this work, a cascade of networks that take as inputs different versions of the original image. After constructing a Gaussian pyramid representation of the microscopy data, the inputs of different size and spatial resolution are given to a cascade of deep convolutional autoencoders whose task is to reconstruct the segmentation mask. The coarse masks obtained from the different networks are summed up in order to provide the final mask. The principal and main contribution of this work is to propose a novel method for the cell counting. Unlike the majority of the methods that use the obtained segmentation mask as the prior information for counting, we propose to utilize the hidden latent representations, often called the high-level features, as the inputs of a neural network based regressor. While the segmentation part of our method performs as good as the conventional deep learning methods, the proposed cell counting approach outperforms the state-of-the-art methods.

Bio-Cell Image Segmentation based on Deep Learning using Denoising Autoencoder and Graph Cuts (디노이징 오토인코더와 그래프 컷을 이용한 딥러닝 기반 바이오-셀 영상 분할)

  • Lim, Seon-Ja;Vununu, Caleb;Kwon, Oh-Heum;Lee, Suk-Hwan;Kwon, Ki-Ryoug
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.10
    • /
    • pp.1326-1335
    • /
    • 2021
  • As part of the cell division method, we proposed a method for segmenting images generated by topography microscopes through deep learning-based feature generation and graph segmentation. Hybrid vector shapes preserve the overall shape and boundary information of cells, so most cell shapes can be captured without any post-processing burden. NIH-3T3 and Hela-S3 cells have satisfactory results in cell description preservation. Compared to other deep learning methods, the proposed cell image segmentation method does not require postprocessing. It is also effective in preserving the overall morphology of cells and has shown better results in terms of cell boundary preservation.

Digital Gray-Scale/Color Image-Segmentation Architecture for Cell-Network-Based Real-Time Applications

  • Koide, Tetsushi;Morimoto, Takashi;Harada, Youmei;Mattausch, Jurgen Hans
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.670-673
    • /
    • 2002
  • This paper proposes a digital algorithm for gray-scale/color image segmentation of real-time video signals and a cell-network-based implementation architecture in state-of-the-art CMOS technology. Through extrapolation of design and simulation results we predict that about 300$\times$300 pixels can be integrated on a chip at 100nm CMOS technology, realizing very high-speed segmentation at about 1600sec per color image. Consequently real-time color-video segmentation will become possible in near future.

  • PDF

Preprocessing Algorithm of Cell Image Based on Inter-Channel Correlation for Automated Cell Segmentation (자동 세포 분할을 위한 채널 간 상관성 기반 세포 영상의 전처리 알고리즘)

  • Song, In-Hwan;Han, Chan-Hee;Lee, Si-Woong
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.5
    • /
    • pp.84-92
    • /
    • 2011
  • The automated segmentation technique of cell region in Bio Images helps biologists understand complex functions of cells. It is mightly important in that it can process the analysis of cells automatically which has been done manually before. The conventional methods for segmentation of cell and nuclei from multi-channel images consist of two steps. In the first step nuclei are extracted from DNA channel, and used as initial contour for the second step. In the second step cytoplasm are segmented from Actin channel by using Active Contour model based on intensity. However, conventional studies have some limitation that they let the cell segmentation performance fall by not considering inhomogeneous intensity problem in cell images. Therefore, the paper consider correlation between DNA and Actin channel, and then proposes the preprocessing algorithm by which the brightness of cell inside in Actin channel can be compensated homogeneously by using DNA channel information. Experiment result show that the proposed preprocessing method improves the cell segmentation performance compared to the conventional method.

Segmentation by Contour Following Method with Directional Angle

  • Na, Cheol-Hun;Kim, Su-Yeong;Kang, Seong-Jun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.874-877
    • /
    • 2012
  • This paper proposes the new method based on contour following method with directional angle to segment the cell into the nuclei. The object image was the Thyroid Gland cell image that was diagnosed as normal and abnormal(two types of abnormal : follicular neoplastic cell, and papillary neoplastic cell), respectively. The nuclei were successfully diagnosed as normal and abnormal. this paper, improved method of digital image analysis required in basic medical science for diagnosis of cells was proposed. The object image was the Thyroid Gland cell image with difference of chromatin patterns. To segment the cell nucleus from background, the region segmentation algorithm by edge tracing was proposed. And feature parameter was obtained from discrete Fourier transformation of image. After construct a feature sample group of each cells, experiment of discrimination was executed with any verification cells. As a result of experiment using features proposed in this paper, get a better segmentation rate(70-90%) than previously reported papers, and this method give shape to get objectivity and fixed quantity in diagnosis of cells. The methods described in this paper be used immediately for discrimination of neoplastic cells.

  • PDF

Automatic Segmentation of Cellular Images for High-Throughput Genome-Wide RNA Interference Screening (고속 Genome-Wide RNA 간섭 스크리닝을 위한 세포영상의 자동 분할)

  • Han, Chan-Hee;Song, In-Hwan;Lee, Si-Woong
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.4
    • /
    • pp.19-27
    • /
    • 2010
  • In recent years, high-throughput genome-wide RNA interference screening is emerging as an essential tool to biologists in understanding complex cellular processes. The manual analysis of the large number of images produced in each study spends much time and the labor. Hence, automatic cellular image analysis becomes an urgent need, where segmentation is the first and one of the most important steps. However, those factors such as the region overlapping, a variety of shapes, and non-uniform local characteristics of cellular images become obstacles to efficient cell segmentation. To avoid the problem, a new watershed-based cell segmentation algorithm using a localized segmentation method and a feature vector is proposed in this paper. Localized approach in segmentation resolves the problems caused by a variety of shapes and non-uniform characteristics. In addition, the poor performance of segmentation in overlapped regions can be improved by taking advantage of a feature vector whose component features complement each other. Simulation results show that the proposed method improves the segmentation performance compared to the method in Cellprofiler.

AAW-based Cell Image Segmentation Method (적응적 관심윈도우 기반의 세포영상 분할 기법)

  • Seo, Mi-Suk;Ko, Byoung-Chul;Nam, Jae-Yeal
    • The KIPS Transactions:PartB
    • /
    • v.14B no.2
    • /
    • pp.99-106
    • /
    • 2007
  • In this paper, we present an AAW(Adaptive Attention Window) based cell image segmentation method. For semantic AAW detection we create an initial Attention Window by using a luminance map. Then the initial AW is reduced to the optimal size of the real ROI(Region of Interest) by using a quad tree segmentation. The purpose of AAW is to remove the background and to reduce the amount of processing time for segmenting ROIs. Experimental results show that the proposed method segments one or more ROIs efficiently and gives the similar segmentation result as compared with the human perception.

Breast Tumor Cell Nuclei Segmentation in Histopathology Images using EfficientUnet++ and Multi-organ Transfer Learning

  • Dinh, Tuan Le;Kwon, Seong-Geun;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.8
    • /
    • pp.1000-1011
    • /
    • 2021
  • In recent years, using Deep Learning methods to apply for medical and biomedical image analysis has seen many advancements. In clinical, using Deep Learning-based approaches for cancer image analysis is one of the key applications for cancer detection and treatment. However, the scarcity and shortage of labeling images make the task of cancer detection and analysis difficult to reach high accuracy. In 2015, the Unet model was introduced and gained much attention from researchers in the field. The success of Unet model is the ability to produce high accuracy with very few input images. Since the development of Unet, there are many variants and modifications of Unet related architecture. This paper proposes a new approach of using Unet++ with pretrained EfficientNet as backbone architecture for breast tumor cell nuclei segmentation and uses the multi-organ transfer learning approach to segment nuclei of breast tumor cells. We attempt to experiment and evaluate the performance of the network on the MonuSeg training dataset and Triple Negative Breast Cancer (TNBC) testing dataset, both are Hematoxylin and Eosin (H & E)-stained images. The results have shown that EfficientUnet++ architecture and the multi-organ transfer learning approach had outperformed other techniques and produced notable accuracy for breast tumor cell nuclei segmentation.