• 제목/요약/키워드: cell regeneration

검색결과 949건 처리시간 0.029초

A red seaweed, Polysiphonia morrowii, extract promotes β-cell regeneration in zebrasfish (Danio rerio)

  • Thilini Ranasinghe;Seon-Heui Cha
    • Fisheries and Aquatic Sciences
    • /
    • 제27권1호
    • /
    • pp.17-22
    • /
    • 2024
  • Diabetes Mellitus (DM) is a major health issue increasing worldwide. Currently, nearby half a billion people have diabetes. Two major types of DM that type 1 and type 2-DM have different etiologies but feature a crucial common pathological transition into dysfunction of pancreatic β-cells and consequently leading hyperglycemia and finally go into DM. Therefore, maintaining of β-cells such as preventing β-cells degeneration, and promoting β-cells regeneration and proliferation will be essential approaches in prevention and/or treatment of DM. There are many reports that various types of seaweed control metabolic diseases such as obesity, high blood pressure, and blood sugar control. However, no new drug candidates have been developed yet. Additionally, although seaweed has excellent blood sugar control effects, there is no evidence that it directly proliferates or regenerates beta cells. Therefore, we studied on the promotion of β-cell regeneration by a seaweed, Polysiponia morrowii extract (PME) which preserves β-cells and maintains its function. As a result, it was confirmed that PME directly promotes the proliferation of pancreatic islet β-cells with insulin secretion function in in vivo. Therefore, PME shows potential as a candidate for β-cell regeneration that may play a fundamental role in the treatment of diabetes.

Indica 벼의 원형질체들로부터 식물체 재분화 (Plant Regeneration from Protoplasts of Indica Rice)

  • 이성호;손영길;이수인;김주현;조무제
    • 한국작물학회지
    • /
    • 제42권5호
    • /
    • pp.615-625
    • /
    • 1997
  • Indica 벼의 원형질체들로 부터 효과적인 식물체 재분화 방법을 개발하였다. 이 방법은 배형성 진탕 세포 배양체로 부터 나출된 원형질체들을 feeder cell들이 agarose에 embedded된 배지 표면에 놓인 filter membrane 위에 배양하는 것이다. Feeder cell로서 Lolium multiflorum 세포배양체를 사용했을 때가 Oryza ridleyi를 사용했을 때보다 효과적이었고, 원형질체 평탄효율은 세포 배양체 age에 따라 달랐지만 최고로 0.68% 까지 증가되었다. Carbohydrate source로서 maltose를 사용하거나 maltose와 sucrose를 1:1로 조합했을 때가 sucrose 단독으로 사용했을 때보다 식물체 재분화율이 증가되었고, 고농도의 agarose를 이용하여 원형질체로부터 유도된 캘러스를 dehydration시켰을 때 또한 재분화율이 괄목하게 증가되었다. 식물체 재분화율은 control 캘러스로부터 3.1∼30.6% 였지만 dehydration처리한 캘러스로부터는 30.7∼70.7%까지 증가되었다. 원형질체로 부터 유도된 식물체들은 형태적으로 정상이며 개화했다.

  • PDF

Magnetic Resonance Imaging (MRI) of a Hypertrophy of Cartilage and Simultaneous Regeneration of a Damaged Meniscus after Autologous Bone Marrow Aspirates Concentrate (BMAC) Transplantation: a Case Report and Literature Review

  • Bae, Sung Hwan;Kim, Hyun-joo;Oh, Eunsun;Hwang, Jiyoung;Hong, Seong Sook;Hwang, Jung Hwa
    • Investigative Magnetic Resonance Imaging
    • /
    • 제21권3호
    • /
    • pp.187-191
    • /
    • 2017
  • Bone marrow aspirates concentrate (BMAC) transplantation is a well-known technique for cartilage regeneration with good clinical outcomes for symptoms in patients with osteoarthritis (OA). Magnetic resonance imaging (MRI) has an important role in evaluating the degree of cartilage repair in cartilage regeneration therapy instead of a second assessment via an arthroscopy. We experienced a case of hypertrophic regeneration of the cartilage and a presumed simultaneous regeneration of the posterior horn of the lateral meniscus after BMAC transplantation for a cartilage defect at the lateral tibial and femoral condyle. This report provides the details of a case of an unusual treatment response after a BMAC transplant. This report is the first of its kind to demonstrate a MR image that displays the simultaneous regeneration of the cartilage and meniscus with a differentiation ability of the mesenchymal stem cell to the desired cell lineage.

Coryne형 제균의 원형질체 융합빈도 향상 (Frequency improvement of protoplast fusion in coryneform bacteria)

  • 김종헌;임번삼;이세영;전문진
    • 미생물학회지
    • /
    • 제23권3호
    • /
    • pp.190-196
    • /
    • 1985
  • For frequency improvement of protoplast fusion in Brevibacterium flavum, Brevibacterium lactofermentum lactofermentum and Corynebacterium glutamicum, the effect of plasma expanders on fusion and cell wall regeneration, compatison between direct and two-step selection method, tendency of fusion frequency according to pH of fusion fluid and polyethylene glycol concentration were examined. By addition of 3% polyvinyl pyrrolidone to cell wall regeneration medium, regeneration frequencies were expressed 23 (Brevibacterium lactofermentum), 10.4 (Brevibacterium flavum) and 2.7 (Corynebacterium glutamicum) times higher than those of none polyvinyl pyrrolidone medium respectively.

  • PDF

Myocardial tissue engineering using electrospun nanofiber composites

  • Kim, Pyung-Hwan;Cho, Je-Yoel
    • BMB Reports
    • /
    • 제49권1호
    • /
    • pp.26-36
    • /
    • 2016
  • Emerging trends for cardiac tissue engineering are focused on increasing the biocompatibility and tissue regeneration ability of artificial heart tissue by incorporating various cell sources and bioactive molecules. Although primary cardiomyocytes can be successfully implanted, clinical applications are restricted due to their low survival rates and poor proliferation. To develop successful cardiovascular tissue regeneration systems, new technologies must be introduced to improve myocardial regeneration. Electrospinning is a simple, versatile technique for fabricating nanofibers. Here, we discuss various biodegradable polymers (natural, synthetic, and combinatorial polymers) that can be used for fiber fabrication. We also describe a series of fiber modification methods that can increase cell survival, proliferation, and migration and provide supporting mechanical properties by mimicking micro-environment structures, such as the extracellular matrix (ECM). In addition, the applications and types of nanofiber-based scaffolds for myocardial regeneration are described. Finally, fusion research methods combined with stem cells and scaffolds to improve biocompatibility are discussed. [BMB Reports 2016; 49(1): 26-36]

High frequency plant regeneration from zygotic-embryo-derived embryogenic cell suspension cultures of watershield (Brasenia schreberi)

  • Oh, Myung Jin;Na, Hye Ryun;Choi, Hong-Keun;Liu, Jang Ryol;Kim, Suk Weon
    • Plant Biotechnology Reports
    • /
    • 제2권1호
    • /
    • pp.87-92
    • /
    • 2008
  • An improved protocol for high frequency plant regeneration via somatic embryogenesis from zygotic embryo-derived cell suspension cultures of watershield (Brasenia schreberi) was developed. Zygotic embryos formed pale-yellow globular structures and white friable callus at a frequency of 80% when cultured on halfstrength MS medium supplemented with $0.3mg\;l^{-1}$ 2,4-D. However, the frequency of formation of pale-yellow globular structures and white friable callus decreased slightly with increasing concentrations of 2,4-D up to $3mg\;l^{-1}$, where the frequency reached ~50% of the control. Cell suspension cultures from zygotic embryoderived white friable callus were established using half-strength MS medium supplemented with $0.3mg\;l^{-1}$ 2,4-D. Upon plating of cell aggregates on half-strength MS basal medium, approximately 8.3% gave rise to somatic embryos and developed into plantlets. However, the frequency of plantlet development from cell aggregates was sharply increased (by up to 55%) when activated charcoal and zeatin were applied. Regenerated plantlets were successfully transplanted to potting soil and grown to normal plants in a growth chamber. The distinctive feature of this study is the establishment of a high frequency plant regeneration system via somatic embryogenesis from zygotic embryo-derived cell suspension cultures of water-shield, which has not been previously reported. The protocol for plant regeneration of watershield through somatic embryogenesis could be useful for the mass propagation and transformation of selected elite lines.

Partial Desiccation of Embryogenic Calli Improves Plant Regeneration in Sugarcane (Saccharum Spp.)

  • Desai Neetin Shivajirao;Suprasanna Penna;Bapat Viswas Ananat
    • Journal of Plant Biotechnology
    • /
    • 제6권4호
    • /
    • pp.229-233
    • /
    • 2004
  • Partial desiccation of embryogenic calli cultures or somatic embryos leads to different physiological changes and maturation of somatic embryos, leading to improved plant regeneration. Embryogenic calli was induced from immature inflorescence segments and young leaf rolls of sugarcane (Saccharum officinarum hybrids CoC-671) on Murashige and Skoog's basal medium enriched with different concentrations of 2,4-D ($1-4\;\cal{mg/l}$), L-glutamine ($100\cal{mg/l}$), malt extract ($100\cal{mg/l}$), casein hydrolysate ($1000\;\cal{mg/l}$) and coconut milk ($5\%$) and solidified with $0.2\%$ gel rite. The embryogenic calli were subjected to desiccation for 1-8 h. Desiccation of the calli for 6-7 h resulted in enhancement of plant regeneration frequency ($83-96\%$) as compared to control ($12\%$). Plantlets exhibited vigorous growth to maturity in the greenhouse. Partial desiccation of embryogenic calli offers as a simple method for improving plant regeneration frequency in sugarcane.

Javanica 벼 원형질체로 부터 효율적인 식물체 재분화와 flow cytometry에 의한 ploidy 검정 (Efficient Fertile Plant Regeneration from Protoplasts of Javanica Rice and Their Ploidy Determination by Flow Cytometry)

  • LEE, Sung-Ho;Lee, Soo In;SHON, Young Goel;GAL, Sang Wan;CHOI, Young Ju;CHO, Moo Je
    • 식물조직배양학회지
    • /
    • 제25권2호
    • /
    • pp.81-88
    • /
    • 1998
  • Southeast Asian javanica 벼 품종 Tinawen의 진탕 배양세포로부터 나출된 원형질체의 효과적인 배양과 식물체 재분화가 조사되었다. Lolium multiforum과 Oryza ridleyi의 진탕 배양세포들을 feeder cell로 사용했고 여러가지 재분화 배지를 이용하여 원형질체로부터 유도된 colony들을 재분화 시켰으며, 또한 식물체 재분화율을 높히기 위해 원형질체로 부터 유도된 colony들을 dehydration 시켜 재분화율을 조사하였다. L multiflorum 또는 O. ridleyi의 진탕 배양세포들을 feeder cell로 사용했을 때 원형질체의 평판효율은 feeder cell type과 age에 따라 차이가 났지만 0.09%에서 1.48% 범위로 나타났고, L. multiflorum을 feeder cell로 사용했을 때가 O. ridleyi cell을 사용했을때 보다 6배 높게 원형질체 평판효율을 얻었다. Feeder cell로 L. multiflorum을 사용하여 배양된 원형질채로부터 유도된 colony들을 dehydration 시킨 경우는 19.3-31.7%, O. ridleyi을 사용한 경우는 13.0-18.0%, 또한 이들 두 진탕 배양세포들을 혼합한 것을 사용한 경우는 18.0-22.0%의 식물체 재분화율을 얻은 반면에, dehydration을 시키지 않았을 때는 각각 2.0-7.0%, 3.0-5.0%, 0-4.0%의 재분화율을 얻었다. 원형 질체에서 재분화된 식물체의 flow cytometry를 이용한 배수성 분석 결과 대부분의 식물체가 이배체로 나타난 반면, 단지 34개중 두 식물체에서만이 4배체로 나타났다. 재분화된 식물체들은 온실에 옮겨 기른 결과 정상적인 임성을 나타내었다.

  • PDF

Cofactor Regeneration Using Permeabilized Escherichia coli Expressing NAD(P)+-Dependent Glycerol-3-Phosphate Dehydrogenase

  • Rho, Ho Sik;Choi, Kyungoh
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권8호
    • /
    • pp.1346-1351
    • /
    • 2018
  • Oxidoreductases are effective biocatalysts, but their practical use is limited by the need for large quantities of NAD(P)H. In this study, a whole-cell biocatalyst for NAD(P)H cofactor regeneration was developed using the economical substrate glycerol. This cofactor regeneration system employs permeabilized Escherichia coli cells in which the glpD and gldA genes were deleted and the gpsA gene, which encodes $NAD(P)^+-dependent$ glycerol-3-phosphate dehydrogenase, was overexpressed. These manipulations were applied to block a side reaction (i.e., the conversion of glycerol to dihydroxyacetone) and to switch the glpD-encoding enzyme reaction to a gpsA-encoding enzyme reaction that generates both NADH and NADPH. We demonstrated the performance of the cofactor regeneration system using a lactate dehydrogenase reaction as a coupling reaction model. The developed biocatalyst involves an economical substrate, bifunctional regeneration of NAD(P)H, and simple reaction conditions as well as a stable environment for enzymes, and is thus applicable to a variety of oxidoreductase reactions requiring NAD(P)H regeneration.

황련과 Centella asiatica 추출물이 치은 섬유모세포에 미치는 영향 (The effect of Rhizoma coptidis and Centella asiatica extracts on human gingival fibroblasts)

  • 유형근
    • Journal of Periodontal and Implant Science
    • /
    • 제26권3호
    • /
    • pp.681-688
    • /
    • 1996
  • Periodontal regeneration requires the migration and proliferation of gingival fibroblasts and periodontal ligament cells. These cellular events are influenced and regulated by growth factors and some drugs. The purpose of this study is to examine the effect of Rhizoma coptidis and Centella asiatica extracts on human gingival fibroblasts. Gingival fibroblasts were primarily cultured from extracted premolar with non-periodontal diseases. Cells were cultured with ${\alpha}-MEM$ at $37^{\circ}C$, 5% $CO_2$, 100% humidity incubator for 2 or 3 days, as a measure of cell proliferation potential, it was examined that the DNA synthesis using $[^3H]-thyrnidine$ incorporation, the cell numbers (with or without dye), and cell viabilities. Rhizoma coptidis is increased the proliferation of gingival fibroblasts at concentration of $10^{-9}g/ml$, but Centella asiatica is decreased the proliferation at all concentrations. This study demonstrated that Rhizoma coptidis is a potential mitogen for human gingival fibroblasts in vitro, and we can expect the usefulness of this drug in periodontal regeneration.

  • PDF