• Title/Summary/Keyword: cell regeneration

Search Result 949, Processing Time 0.029 seconds

Biomaterials-assisted spheroid engineering for regenerative therapy

  • Lee, Na-Hyun;Bayaraa, Oyunchimeg;Zechu, Zhou;Kim, Hye Sung
    • BMB Reports
    • /
    • v.54 no.7
    • /
    • pp.356-367
    • /
    • 2021
  • Cell-based therapy is a promising approach in the field of regenerative medicine. As cells are formed into spheroids, their survival, functions, and engraftment in the transplanted site are significantly improved compared to single cell transplantation. To improve the therapeutic effect of cell spheroids even further, various biomaterials (e.g., nano- or microparticles, fibers, and hydrogels) have been developed for spheroid engineering. These biomaterials not only can control the overall spheroid formation (e.g., size, shape, aggregation speed, and degree of compaction), but also can regulate cell-to-cell and cell-to-matrix interactions in spheroids. Therefore, cell spheroids in synergy with biomaterials have recently emerged for cell-based regenerative therapy. Biomaterials-assisted spheroid engineering has been extensively studied for regeneration of bone or/and cartilage defects, critical limb ischemia, and myocardial infarction. Furthermore, it has been expanded to pancreas islets and hair follicle transplantation. This paper comprehensively reviews biomaterials-assisted spheroid engineering for regenerative therapy.

Adjuvant role of macrophages in stem cell-induced cardiac repair in rats

  • Lim, Soo yeon;Cho, Dong Im;Jeong, Hye-yun;Kang, Hye-jin;Kim, Mi Ra;Cho, Meeyoung;Kim, Yong Sook;Ahn, Youngkeun
    • Experimental and Molecular Medicine
    • /
    • v.50 no.11
    • /
    • pp.1.1-1.10
    • /
    • 2018
  • Bone marrow-derived mesenchymal stem cells (BMMSCs) are used extensively for cardiac repair and interact with immune cells in the damaged heart. Macrophages are known to be modulated by stem cells, and we hypothesized that priming macrophages with BMMSCs would enhance their therapeutic efficacy. Rat bone marrow-derived macrophages (BMDMs) were stimulated by lipopolysaccharide (LPS) with or without coculture with rat BMCs. In the LPS-stimulated BMDMs, induction of the inflammatory marker iNOS was attenuated, and the anti-inflammatory marker Arg1 was markedly upregulated by coculture with BMMSCs. Myocardial infarction (MI) was induced in rats. One group was injected with BMMSCs, and a second group was injected with MIX (a mixture of BMMSCs and BMDMs after coculture). The reduction in cardiac fibrosis was greater in the MIX group than in the BMC group. Cardiac function was improved in the BMMSC group and was substantially improved in the MIX group. Angiogenesis was better in the MIX group, and anti-inflammatory macrophages were more abundant in the MIX group than in the BMMSC group. In the BMMSCs, interferon regulatory factor 5 (IRF5) was exclusively induced by coculture with macrophages. IRF5 knockdown in BMMSCs failed to suppress inflammatory marker induction in the macrophages. In this study, we demonstrated the successful application of BMDMs primed with BMMSCs as an adjuvant to cell therapy for cardiac repair.

Cardiac Development and Cell Cycle

  • Koh, Keum-Nim;Lee, Seog-Jae;Lee, Ho-Keun;Ahn, Ji-Eun;Kim, Jae-Chol;Ha, Ki-Chan;Chae, Soo-Wan;Koh, Gau-Young
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1998.06a
    • /
    • pp.13-13
    • /
    • 1998
  • The molecular mechanisms that arrest cardiomyocytes in the cell cycle during postnatal period remain largely unknown. The activity of CDKs control cell cycle progression, and this activity is regulated positively and negatively by association of CDKs with cyclins and cyelin dependent kinase inhibitors (CKIs) respectively.(omitted)

  • PDF

A novel and safe small molecule enhances hair follicle regeneration by facilitating metabolic reprogramming

  • Son, Myung Jin;Jeong, Jae Kap;Kwon, Youjeong;Ryu, Jae-Sung;Mun, Seon Ju;Kim, Hye Jin;Kim, Sung-wuk;Yoo, Sanghee;Kook, Jiae;Lee, Hongbum;Kim, Janghwan;Chung, Kyung-Sook
    • Experimental and Molecular Medicine
    • /
    • v.50 no.12
    • /
    • pp.5.1-5.15
    • /
    • 2018
  • Targeting hair follicle regeneration has been investigated for the treatment of hair loss, and fundamental studies investigating stem cells and their niche have been described. However, knowledge of stem cell metabolism and the specific regulation of bioenergetics during the hair regeneration process is currently insufficient. Here, we report the hair regrowth-promoting effect of a newly synthesized novel small molecule, IM176OUT05 (IM), which activates stem cell metabolism. IM facilitated stemness induction and maintenance during an induced pluripotent stem cell generation process. IM treatment mildly inhibited mitochondrial oxidative phosphorylation and concurrently increased glycolysis, which accelerated stemness induction during the early phase of reprogramming. More importantly, the topical application of IM accelerated hair follicle regeneration by stimulating the progression of the hair follicle cycle to the anagen phase and increased the hair follicle number in mice. Furthermore, the stem cell population with a glycolytic metabotype appeared slightly earlier in the IM-treated mice. Stem cell and niche signaling involved in the hair regeneration process was also activated by the IM treatment during the early phase of hair follicle regeneration. Overall, these results show that the novel small molecule IM promotes tissue regeneration, specifically in hair regrowth, by restructuring the metabolic configuration of stem cells.

Ahnak depletion accelerates liver regeneration by modulating the TGF-β/Smad signaling pathway

  • Yang, Insook;Son, Yeri;Shin, Jae Hoon;Kim, Il Yong;Seong, Je Kyung
    • BMB Reports
    • /
    • v.55 no.8
    • /
    • pp.401-406
    • /
    • 2022
  • Ahnak, a large protein first identified as an inhibitor of TGF-β signaling in human neuroblastoma, was recently shown to promote TGF-β in some cancers. The TGF-β signaling pathway regulates cell growth, various biological functions, and cancer growth and metastasis. In this study, we used Ahnak knockout (KO) mice that underwent a 70% partial hepatectomy (PH) to investigate the function of Ahnak in TGF-β signaling during liver regeneration. At the indicated time points after PH, we analyzed the mRNA and protein expression of the TGF -β/Smad signaling pathway and cell cycle-related factors, evaluated the cell cycle through proliferating cell nuclear antigen (PCNA) immunostaining, analyzed the mitotic index by hematoxylin and eosin staining. We also measured the ratio of liver tissue weight to body weight. Activation of TGF-β signaling was confirmed by analyzing the levels of phospho-Smad 2 and 3 in the liver at the indicated time points after PH and was lower in Ahnak KO mice than in WT mice. The expression levels of cyclin B1, D1, and E1; proteins in the Rb/E2F transcriptional pathway, which regulates the cell cycle; and the numbers of PCNA-positive cells were increased in Ahnak KO mice and showed tendencies opposite that of TGF-β expression. During postoperative regeneration, the liver weight to body weight ratio tended to increase faster in Ahnak KO mice. However, 7 days after PH, both groups of mice showed similar rates of regeneration, following which their active regeneration stopped. Analysis of hepatocytes undergoing mitosis showed that there were more mitotic cells in Ahnak KO mice, consistent with the weight ratio. Our findings suggest that Ahnak enhances TGF-β signaling during postoperative liver regeneration, resulting in cell cycle disruption; this highlights a novel role of Ahnak in liver regeneration. These results provide new insight into liver regeneration and potential treatment targets for liver diseases that require surgical treatment.

Transcriptional regulatory network during development in the olfactory epithelium

  • Im, SeungYeong;Moon, Cheil
    • BMB Reports
    • /
    • v.48 no.11
    • /
    • pp.599-608
    • /
    • 2015
  • Regeneration, a process of reconstitution of the entire tissue, occurs throughout life in the olfactory epithelium (OE). Regeneration of OE consists of several stages: proliferation of progenitors, cell fate determination between neuronal and non-neuronal lineages, their differentiation and maturation. How the differentiated cell types that comprise the OE are regenerated, is one of the central questions in olfactory developmental neurobiology. The past decade has witnessed considerable progress regarding the regulation of transcription factors (TFs) involved in the remarkable regenerative potential of OE. Here, we review current state of knowledge of the transcriptional regulatory networks that are powerful modulators of the acquisition and maintenance of developmental stages during regeneration in the OE. Advance in our understanding of regeneration will not only shed light on the basic principles of adult plasticity of cell identity, but may also lead to new approaches for using stem cells and reprogramming after injury or degenerative neurological diseases.

High frequency plant regeneration from transverse thin cell layers in Indian mustard (Brassica juncea L.)

  • Bhuiyan, Mohammed Shafi Ullah;Lim, Yong-Pyo;Min, Sung-Ran;Choi, Kwan-Sam;Liu, Jang-R.
    • Journal of Plant Biotechnology
    • /
    • v.36 no.1
    • /
    • pp.81-86
    • /
    • 2009
  • An efficient and reproducible plant regeneration system was established using transverse thin cell layers (tTCLs) in five cultivars of Brassjca juncea L. The effects of medium conditions, explant types (tTCLs of hypcotyl and cotyledonary petiole) on shoot regeneration were examined in this study. The maximum shoot regeneration frequency was obtained in Murashige and Skoog (MS) medium supplemented with 4 mg/L 6-benzylaminopurine (BA) and 0.2 mg/L 1-naphthaleneacetic acid (NAA). The hypocotyls derived tTCL explants had more shoot regeneration frequency (52%) than the cotyledonary petiole derived tTCL explants. Shoot induction was further improved by the addition of silver nitrate ($AgNO_3$) in the regeneration medium. A significant genotypic effect was also observed between the five cultivars; Rai-5 displayed higher capacities to produce shoots than other cultivars. Regenerated shoots were rooted on MS basal medium without PGRs which induced 90% of roots. The plantlets established in greenhouse conditions with 99% survival, flowered normally and set seeds. The regenerated plants were fertile and identical to source plants.

Efficient Plantlet Regeneration via Callus Formation from Leaf Segment of Lilium Oriental Hybrid 'Casa Blanca'

  • Kim Mi-Sun;Jeon Jae-Heung;Youm Jung-Won;Kim Jae-Hyun;Lee Byung-Chan;Kang Won-Jin;Kim Hyun-Soon;Joung Hyouk
    • Journal of Plant Biotechnology
    • /
    • v.7 no.2
    • /
    • pp.129-134
    • /
    • 2005
  • Callus induction from a leaf explant has been achieved in Lilium Oriental hybrid 'Casa Blanca'. The highest frequency of callus induction was obtained on MS medium supplemented with 0.5 mg/L BA and 2.0 mg/L NAA after 2 months of culture. The cultures maintained continuously without change in color and type of callus when they cultured in the dark. Plantlet regeneration with a high frequency was achieved from induced calli on the same medium. A number of shoots are formed from one cluster of callus, and bulblets developed into intact plantlets after transfer to hormone-free MS medium. No phenotypic variations were observed among regenerants. Enhancement in plantlet regeneration via callus formation would be expected to facilitate the efficiency of transformation of this Oriental hybrid 'Casa Blanca'.

Effects of benzyladenine on the cell wall regeneration of soybean(Glycine max) protoplasts (대두(Glycine max) protoplast의 세포벽재생에 대한 benzyladenine의 영향)

  • Riu, Key-Zung;Park, Chang-Kyu
    • Applied Biological Chemistry
    • /
    • v.35 no.6
    • /
    • pp.507-512
    • /
    • 1992
  • A ${\beta}-1,3-glucanase$ of soybean (Glycine max) was isolated, and the effects of benzyladenine(BA) on celluar levels of the enzyme content and activity were studied. The effects of BA on callose content in cell wall and wall regeneration of protoplasts were also studied to show promoting effect of cytokinin in cell wall regeneration and to elucidate action mode of cytokinin. The polypeptide of 21 kD was identified as ${\beta}-1,3-glucanase$, and the cellular content and activity of this polypeptide were decreased by BA treatment. The callose content in cell wall of callus and the wall regeneration of protoplasts were increased by BA treatment. These results indicate that cytokinin promotes cell wall regeneration by inhibition of callose degradation via decreasing ${\beta}-1,3-glucanase$ level in cell.

  • PDF

Bone Regeneration Using Block-type Deproteinized Porcine Bone Mineral with Collagen Membrane Using 3,4-Dihydroxyphenylalanine as Bone Adhesive

  • Kang, Joo Hyun;Pae, Hyoung-Chul;Cha, Jae-Kook;Lee, Jung-Seok;Paik, Jeong-Won;Jung, Ui-Won;Choi, Seong-Ho
    • Journal of Korean Dental Science
    • /
    • v.11 no.2
    • /
    • pp.43-56
    • /
    • 2018
  • Purpose: The purpose of this study was to assess the adhesiveness and cytotoxicity of 3, 4-dihydroxyphenylalanine (DOPA), and to evaluate the role of collagen membrane with DOPA in the guided bone regeneration. Materials and Methods: Peel resistance and cell cytotoxicity test were performed. Four defect types in nine rabbit calvaria were randomly allocated: i) control, ii) membrane, iii) deproteinized porcine bone mineral (DPBM) covered by membrane with DOPA, and iv) DPBM covered by membrane with cyanoacrylate. Animals were sacrificed at 2 (n=4) and 8 weeks (n=5) for microcomputed tomography and histomorphometric analysis. DOPA showed low peel resistance but high cell viability. Result: Cyanoacrylate and DOPA groups showed significantly higher mineralized tissue volume (MTV) compared to control and membrane groups at 2 weeks (P<0.05). At 8 weeks, DOPA group showed the highest MTV. Significantly higher new bone area was found in DOPA group at 8 weeks (P<0.05). Bone formation increased from 2 to 8 weeks in DOPA group (P<0.05). Conclusion: DOPA showed high cell viability and in vivo study revealed predictable performance in bone regeneration.