• Title/Summary/Keyword: cell refractive index

Search Result 71, Processing Time 0.032 seconds

산화규소 박막을 활용한 반사방지막 코팅 제조 및 특성분석

  • Kim, Gyeong-Hun;Kim, Seong-Min;Jang, Jin-Hyeok;Han, Seung-Hui
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.300.1-300.1
    • /
    • 2013
  • 반사방지막 코팅(Anti-reflection coating)은 태양전지(Solar cell), 발광다이오드(LED) 등의 반사율을 낮추어 효율을 증대시키기 위하여 사용되고 있다. 본 실험에서는 유리 기판 위에 실리콘 타겟을 이용한 Reactive magnetron sputtering 장비를 활용하여, 50~100 mTorr의 높은 공정 압력(High pressure)에서 증착하여 SiO2 반사방지막 코팅층을 형성하였다. Ellipsometer를 이용하여 SiO2 박막층의 굴절률(Refractive index)을 측정한 결과, 공정 압력에 따라 SiO2 박막이 다양한 굴절률을 가지는 것을 확인할 수 있었다. 또한, UV-Vis spectrometer를 이용하여, 450~600 nm 파장에서의 반사율(Reflectance)과 투과율(Transmittance)을 측정하여 비교, 분석하였다. 나아가 증착된 SiO2 반사방지막을 비정질 실리콘 박막 태양전지에 적용하여 효율 향상 효과를 실험하였다. 이를 활용하여 낮은 굴절률을 갖는 반사방지용 SiO2 코팅층을 형성하여 태양전지의 광 변환 효율을 상승 시킬 수 있고, 발광다이오드의 광 추출 효율을 증가시킬 있을 것으로 여겨진다.

  • PDF

Influence of PECVD SiNx Layer on Multicrystalline Silicon Solar Cell (PECVD SiNx 박막의 다결정 실리콘 태양전지에 미치는 영향)

  • Kim, Jeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.7
    • /
    • pp.662-666
    • /
    • 2005
  • Silicon nitride $(SiN_x)$ film is a promising material for anti-reflection coating and passivation of multicrystalline silicon (me-Si) solar cells. In this work, a plasma-enhanced chemical vapor deposition (PECVD) system with batch-type reactor tube was used to prepare highly robust $SiN_x$ films for screen-printed mc-Si solar cells. The Gas flow ratio, $R=[SiH_4]/[NH_3]$, in a mixture of silane and ammonia was varied in the range of 0.0910.235 while maintaining the total flow rate of the process gases to 4,200 sccm. The refractive index of the $SiN_x$ film deposited with a gas flow ratio of 0.091 was measured to be 2.03 and increased to 2.37 as the gas flow ratio increased to 0.235. The highest efficiency of the cell was $14.99\%$ when the flow rate of $SiH_4$ was 350 sccm (R=0.091). Generally, we observed that the efficiency of the mc-Si solar cell decreased with increasing R. From the analysis of the reflectance and the quantum efficiency of the cell, the decrease in the efficiency was shown to originate mainly from an increase in the surface reflectance for a high flow rate of $SiH_4$ during the deposition of $SiN_x$ films.

Effect of SiO2 Antireflection Coating on the Si Solar Cell (Si 태양전지에서 SiO2 광반사 방지막의 처리 효과)

  • Chang Gee-Keun;Lim Yong-Keu;Hwang Yong-Woon;Cho Jae-Uk
    • Korean Journal of Materials Research
    • /
    • v.14 no.2
    • /
    • pp.152-156
    • /
    • 2004
  • We have studied the effective optical absorption power of Si solar cell with $SiO_2$-antireflection layer based on a mathematical modelling of AM(air mass)1 spectrum and Si refractive index in the wavelength range(0.4 $\mu\textrm{m}\leq$λ$\leq$$0.97\mu\textrm{m}$). The effective optical absorption power obtained from the theoretical calculation was 450 and 520 W/$\m^2$ for the Si solar cells with $SiO_2$-antireflection layer of 500$\AA$ and 1000$\AA$, respectively. The optimum thickness of $SiO_2$-antireflection layer showing the minimum reflection loss was about 1000$\AA$ in the computer simulation. Two kinds of Si solar cells named EBS(500$\AA$) and EBS(l000$\AA$) were fabricated to evaluate the effect of $SiO_2$-antireflection layer thickness on the optical absorption. The epitaxial base Si cell with $SiO_2$-antireflection layer of 1000$\AA$ [EBS(l000$\AA$)] showed the output power improvement of about 15% upon the EBS(500$\AA$) cell due to larger absorption of effective optical power under illumination of AM1, 1 sun.

Optical Simulation Study on Indoor Organic Photovoltaics with Textured Electrodes towards Self-powered Photodetector

  • Biswas, Swarup;Kim, Hyeok
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.236-239
    • /
    • 2019
  • In this work, we performed an optical simulation study on the performance of a PMDPP3T:PCBM based on an organic photovoltaic (PV) device. The virtual PV device was developed in Lumerical, finite-difference time-domain (FDTD) solutions. Different layers of the PV cell have been defined through the incorporation of complex refractive index value of those layers' constituent materials. During the simulation study, the effect of the variation active layer thickness on an ideal short circuit current density ($J_{sc,ideal}$) of the PV cell has been, first, observed. Thereafter, we have investigated the impact of surface roughness of a transparent conducting oxide (TCO) electrode on $J_{sc,ideal}$ of the PV cells. From this simulation, it has been observed that the $J_{sc,ideal}$ value of the PV cell is strongly dependent on the thickness of its active layer and the photon absorption of the PV cell has gradually decreased with the increment of the TCO's surface roughness. As a result, the capability of the PV device has been reduced with the increment of the surface roughness of the TCO.

Improving the Performances of Dye-Sensitized Solar Cell by the Optimal $TiO_2$ Photoelectrode Thickness and Light-Scattering Enhancement (최적 $TiO_2$ 전극 두께 및 광산란 증가에 의한 염료감응형 태양광전지의 효율 개선)

  • Niu, Zeng Yuan;Kweon, Hyun Kyu;Park, Chang Yong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.2
    • /
    • pp.37-44
    • /
    • 2014
  • In this study, the performance of dye-sensitized solar cells with different thickness of the photelectrode film was simulated by using the electron-diffusion differential model. Through this simulation, the relationships between the thickness of the photoelectrode film and the performances (open-circuit voltage, short-circuit current density, and overall photoelectric-conversion efficiency) of cells were understood and the performances with different thickness of the photoelectrede film were also examined. For considering the refractive index in the liquid electrolyte and exploring the scattering effect of titanium dioxide particles with different sizes using the Mie light-scattering theory, the highest scattering effect of each particles was found out and the optimal size of the titanium dioxide particle was determined for light scattering in the photoelectrode film of dye-sensitized solar cell. Through experiment, the mixed titanium dioxide cell was better than the single titanium dioxide cell and generated a higher overall conversion efficiency because the optimal titanium dioxide particles in the phoelectrode film as light scattering.

Properties of Silicon Nitride Deposited by LF-PECVD with Various Thicknesses and Gas Ratios (가스비와 두께 가변에 따른 실리콘질화막의 특성)

  • Park, Je-Jun;Kim, Jin-Kuk;Lee, Hi-Deok;Kang, Gi-Hwan;Yu, Gwon-Jong;Song, Hee-Eun
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.154-157
    • /
    • 2011
  • Hydrogenated silicon nitride deposited by LF-PECVD is commonly used for anti-reflection coating and passivation in silicon solar cell fabrication. The deposition of the optimized silicon nitride on the surface is elemental in crystalline silicon solar cell. In this work, the carrier lifetimes were measured while the thicknesses of $SiN_x$ were changed from 700 ${\AA}$ to 1150 ${\AA}$ with the gas flow of $SiH_4$ as 40 sccm and $NH_3$ as 120 sccm,. The carrier lifetime enhanced as the thickness of $SiN_x$ increased due to improved passivation effect. To study the characteristics of $SiN_x$ with various gas ratios, the gas flow of $NH_3$ was changed from 40 sccm to 200 sccm with intervals of 40 sccm. The thickness of $SiN_x$ was fixed as 1000 ${\AA}$ and the gas flow of $SiH_4$ as 40 sccm. The refractive index of SiNx and the carrier lifetime were measured before and after heat treating at $650^{\circ}C$ to investigate their change by the firing process in solar cell fabrication. The index of refraction of SiNx decreased as the gas ratios increased and the longest carrier lifetime was measured with the gas ratio $NH_3/SiH_4$ of 3.

  • PDF

Investigations on Microcrystalline Silicon Films for Solar Cell Application

  • Hwang, Hae-Sook;Park, Min-Gyu;Ruh, Hyun;Yu, Hyun-Ung
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2909-2912
    • /
    • 2010
  • Hydrogenated microcrystalline silicon (${\mu}c$-Si:H) thin film for solar cells is prepared by plasma-enhanced chemical vapor deposition and physical properties of the ${\mu}c$-Si:H p-layer has been investigated. With respect to stable efficiency, this film is expected to surpass the performance of conventional amorphous silicon based solar cells and very soon be a close competitor to other thin film photovoltaic materials. Silicon in various structural forms has a direct effect on the efficiency of solar cell devices with different electron mobility and photon conversion. A Raman microscope is adopted to study the degree of crystallinity of Si film by analyzing the integrated intensity peaks at 480, 510 and $520\;cm^{-1}$, which corresponds to the amorphous phase (a-Si:H), microcrystalline (${\mu}c$-Si:H) and large crystals (c-Si), respectively. The crystal volume fraction is calculated from the ratio of the crystalline and the amorphous phase. The results are compared with high-resolution transmission electron microscopy (HR-TEM) for the determination of crystallinity factor. Optical properties such as refractive index, extinction coefficient, and band gap are studied with reflectance spectra.

The Study on the Reflection Coating Design Scheme in the Thin-Film Silicon Solar Cell (박막 실리콘 태양전지의 반사코팅 설계기술 연구)

  • Kim, Chang-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5172-5177
    • /
    • 2011
  • This paper presents a reflection coating design scheme in the thin-film silicon solar cell. The antireflection(high reflection) coating skill is needed in the front(back) panel of the thin-film solar cell to improve an efficiency of light absorbing. In the single structure a reflectivity is changed according to the thickness of coating for antireflection scheme and its minimum value can be obtained by controlling thickness of coating. In the symmetric multi layer structure low reflectivity can be obtained in the wide wavelength range. And we also find that high reflectivity can be obtained through multi layer structure, which has alternate layers of high and low material, for high reflection scheme in the back panel.

The effect of rear side etching for crystalline Si solar cells (후면식각이 결정질 실리콘 태양전지에 미치는 영향에 관한 연구)

  • Shin, Jeong Hyun;Kim, Sun Hee;Lee, Hongjae;Kim, Bum Sung;Lee, Don Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.72.2-72.2
    • /
    • 2010
  • Nowadays, the crystalline Si Solar cell are expected for economical renewable energy source. The cost of the crystalline Si solar cell are decreasing by improvement of its efficiency and decrease of the cost of the raw Si wafers for Solar cells. This Si wafer based crystalline Si solar cell is the verified technology from several decade of its history. Now, I will introduce one method that can be upgrade the efficiency by using simple and economical method. The name of this method is Rear Side Etching(RSE). The purpose of rear side etching is the elimination of n+ layer of rear side and increase of the flatness. The effects of rear side etching are the improvement of Voc and increase of efficiency by reducement series resistance and forming of uniform BSF. The experimental procedure for rear side etching is very simple. After anti-reflection coating on solar cell wafer, Solar cell wafer is etched by the etching chemical that react with only rear side not front side. This special chemical is no harmful to anti-reflection coating layer. It can only etched rear side of solar cell wafer. We can use etching image by optical microscope, minority carrier life time by WCT 120, SiNx thickness and refractive index by ellipsometer, cell efficiency for the RSE effect measurement. The key point of rear side etching is development of etching process condition that react with only rear side. If we can control this factor, we can achieve increase of solar cell efficiency very economically without new device.

  • PDF

Varying Refractive Index of Antireflection Layer for Crystalline Si Solar Cell

  • Yeo, In-Hwan;Park, Ju-Eok;Kim, Jun-Hui;Jo, Hae-Seong;Im, Dong-Geon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.702-702
    • /
    • 2013
  • 태양전지에서 SiNX층은 반사방지막 역할과 태양전지 소자 보호 역할 2가지를 동시에 하고 있다. 태양전지에서 반사방지막은 굴절률 1.97, 두께 76 nm가 이론적으로 최적의 상태이다. PECVD장비를 이용하여 SiNx 층을 증착하였다. SiNX층 증착 시에 RF 파워와 혼합 가스를 변화한 후 굴절률을 측정하였다. RF 파워는 100~400 W로 변화시켰고 혼합가스 변화는 SiH4가스와 N2, H2, N2+H2 가스 각각을 같이 넣어 주면서 증착하였다. SiNX 가스 자체에 N2가 80%섞여 있는 가스를 사용하기 때문에 SiH4 가스자체 만으로도 SiNx층을 형성 할 수 있다. RF파워 300 W, SiH4 50 sccm, 기판 온도 $300^{\circ}C$, 공정시간 63초에서 굴절률 1.965, 두께 76 nm를 갖는 SiNx층을 형성 할 수 있었고 개방전압: 0.616 V, 전류밀도: 37.78 mA/$cm^2$, 충실도:76.59%, 효율: 17.82%로 가장 높은 효율을 얻을 수 있었다.

  • PDF