• 제목/요약/키워드: cell monitoring

검색결과 724건 처리시간 0.032초

Stabilization of Bioluminescence of Immobilized Photobacterium phosphoreum and Monitoring of Environmental Pollutants

  • Britz, Margaret L.;Nina Simonov;Chun, Uck-Han
    • Journal of Microbiology and Biotechnology
    • /
    • 제7권4호
    • /
    • pp.242-249
    • /
    • 1997
  • Stability of bioluminescence was investigated with Photobacterium phosphoreum immobilized on the strontium alginate in order to develope continuous real time monitoring of pollutants. The stability of bioluminescence emission was improved by prolonged aging time. The aging time of ${\geq}40$ min and the cell concentration of ${\leq}0.6\;of\;OD_660$ were selected for the immobilization of P. phosphoreum to give linearity between cell concentrations and bioluminescence intensity. In sensitivity tests using phenol, it was found that this compound quenched bioluminescence proportional to the concentration without lowering of cell growth. The lower value for maximum quenching ($q_s$) and higher dissociation constant ($K_s$) were observed with strontium-alginate immobilized cells compared to free cells. The response of bioluminescence to toxicants was evaluated with the immobilized luminescent bacteria. The sensitivity of the immobilized cells was found to be good in response to toxicants, 4-nitrophenol, salicylate and cadmium, when evaluated with a specific rate of bioluminescence quenching.

  • PDF

낙동강 친수활동구간 유해 남조류 분포와 피코시아닌(Phycocyanin) 농도 상관성에 관한 연구 (A Study on the Correlation between the Harmful Cyanobacterial Density and Phycocyanin Concentration at Recreational Sites in Nakdong River)

  • 김효진;김민경
    • 한국물환경학회지
    • /
    • 제39권6호
    • /
    • pp.451-464
    • /
    • 2023
  • Harmful cyanobacterial monitoring is time-consuming and requires skilled professionals. Recently, Phycocyanin, the accessory pigment unique to freshwater cyanobacteria, has been proposed as an indicator for the presence of cyanobacteria, with the advantage of rapid and simple measurement. The purpose of this research was to evaluate the correlation between the harmful cyanobacterial cell density and the concentration of phycocyanin and to consider how to use the real-time water quality monitoring system for algae bloom monitoring. In the downstream of the Nakdong River, Microcystis spp. showed maximum cell density (99 %) in harmful cyanobacteria (four target genera). A strong correlation between phycocyanin(measured in the laboratory) concentrations and harmful cyanobacterial cell density was observed (r = 0.90, p < 0.001), while a weaker relationship (r = 0.65, p < 0.001) resulted between chlorophyll a concentration and harmful cyanobacterial cell density. As a result of comparing the phycocyanin concentration (measured in submersible fluorescence sensor) and harmful cyanobacterial cell density, the error range increased as the number of cyanobacteria cells increased. Before opening the estuary bank, the diurnal variations of phycocyanin concentrations did not mix by depth, and in the case of the surface layer, a pattern of increase and decrease over time was shown. This study is the result of analysis when Microcystis spp. is dominant in downstream of Nakdong River in summer, therefore the correlation between the harmful cyanobacteria density and phycocyanin concentrations should be more generalized through spatio-temporal expansion.

Lugol's Iodine Solution 첨가 후 보존 기간별 남조류 세포부피 변화 및 수축비를 이용한 생세포 부피 산정 (Effect of Lugol's Iodine Preservation on Cyanobacterial Biovolume and Estimate of Live Cell Biovolume Using Shrinkage Ratio)

  • 박혜경;이현제;이혜진;신라영
    • 한국물환경학회지
    • /
    • 제34권4호
    • /
    • pp.375-381
    • /
    • 2018
  • The monitoring of phytoplankton biomass and community structure is essential as a first step to control the harmful cyanobacterial blooms in freshwater systems, such as seen in rivers and lakes, due to the process of eutrophication and climate change. In order to quantify the biomass of phytoplankton with a wide range in size and shape, the measurement of cell biovolume along with cell density is required for a comprehensive review on this issue. However, most routine monitoring programs preserve the gathered phytoplankton samples before analysis using chemical additives, because of the constraint of time and the number of samples. The purpose of this study was to investigate the cell biovolume change characteristics of six cyanobacterial species, which are common bloom-causing cyanobacteria in the Nakdong River, after the preservation with Lugol's iodine solution. All species showed a statistically significant difference after the addition of Lugol's iodine solution compared to the live cell biovolume, and the cell biovolume decreased to the level of 34.0 ~ 56.3 % at maximum in each species after the preservation. The nonlinear regression models for determining the shrinkage ratio by a preservation period were derived by using the cell biovolume measured until 180 days preservation of each target species, and the equation to convert the cell biovolume measured after preservation for a certain period to the cell biovolume of viable cell was derived using that formula. The conversion equation derived from this study can be used to estimate the actual cell biovolume in the natural environment at the time of sampling, by using the measured biovolume after the preservation in the phytoplankton monitoring. Moreover this is expected to contribute to the final interpretation of the water quality and aquatic ecosystem impacts due to the cyanobacterial blooms.

Cell Surface Antigen Display for Neuronal Differentiation-Specific Tracking

  • Kim, Sang Chul;Lee, Eun-Hye;Yu, Ji Hea;Kim, Sang-Mi;Nam, Bae-Geun;Chung, Hee Yong;Kim, Yeon-Soo;Cho, Sung-Rae;Park, Chang-Hwan
    • Biomolecules & Therapeutics
    • /
    • 제27권1호
    • /
    • pp.78-84
    • /
    • 2019
  • Cell therapeutic agents for treating degenerative brain diseases using neural stem cells are actively being developed. However, few systems have been developed to monitor in real time whether the transplanted neural stem cells are actually differentiated into neurons. Therefore, it is necessary to develop a technology capable of specifically monitoring neuronal differentiation in vivo. In this study, we established a system that expresses cell membrane-targeting red fluorescent protein under control of the Synapsin promoter in order to specifically monitor differentiation from neural stem cells into neurons. In order to overcome the weak expression level of the tissue-specific promoter system, the partial 5' UTR sequence of Creb was added for efficient expression of the cell surface-specific antigen. This system was able to track functional neuronal differentiation of neural stem cells transplanted in vivo, which will help improve stem cell therapies.

A new cell-direct quantitative PCR based method to monitor viable genetically modified Escherichia coli

  • Yang Qin;Bo Qu;Bumkyu Lee
    • 농업과학연구
    • /
    • 제49권4호
    • /
    • pp.795-807
    • /
    • 2022
  • The development and commercialization of industrial genetically modified (GM) organisms is actively progressing worldwide, highlighting an increased need for improved safety management protocols. We sought to establish an environmental monitoring method, using real-time polymerase chain reaction (PCR) and propidium monoazide (PMA) treatment to develop a quantitative detection protocol for living GM microorganisms. We developed a duplex TaqMan quantitative PCR (qPCR) assay to simultaneously detect the selectable antibiotic gene, ampicillin (AmpR), and the single-copy Escherichia coli taxon-specific gene, D-1-deoxyxylulose 5-phosphate synthase (dxs), using a direct cell suspension culture. We identified viable engineered E. coli cells by performing qPCR on PMA-treated cells. The theoretical cell density (true copy numbers) calculated from mean quantification cycle (Cq) values of PMA-qPCR showed a bias of 7.71% from the colony-forming unit (CFU), which was within ±25% of the acceptance criteria of the European Network of GMO Laboratories (ENGL). PMA-qPCR to detect AmpR and dxs was highly sensitive and was able to detect target genes from a 10,000-fold (10-4) diluted cell suspension, with a limit of detection at 95% confidence (LOD95%) of 134 viable E. coli cells. Compared to DNA-based qPCR methods, the cell suspension direct PMA-qPCR analysis provides reliable results and is a quick and accurate method to monitor living GM E. coli cells that can potentially be released into the environment.

풍력발전기의 성능 모니터링 및 하중분석 (Performance Monitoring and Load Analysis of Wind Turbine)

  • 배재성;김성완;윤정은;경남호
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2004년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.385-389
    • /
    • 2004
  • Test facilities for the wind turbine performance monitoring and mechanical load measurements are installed in Vestas 100 kW wind turbine in Wollyong test site, Jeju island. The monitoring system consists of Garrad-Hassan T-MON system, telemetry system for blade load measurement, various sensors such as anemometer, wind vane, strain gauge, power meter, and etc. The experimental procedure for the measurement of wind turbine loads, such as edgewise(lead-lag) bending moment, flapwise bending moment, and tower base bending moment, has been established. Strain gauges are on-site calibrated against load cell prior to monitoring the wind turbine loads. Using the established monitoring system, the wind turbine is remotely monitored. From the measured load data, the load analysis has been performed to obtain the load power spectral density and the fatigue load spectra of the wind turbine.

  • PDF

나주지역의 태양열 설비의 모니터링에 관한 연구 (The Study of Monitoring Characteristics of a solar heat system with Naju)

  • 신영식;정성찬;최정식;차인수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1078_1079
    • /
    • 2009
  • 본 논문에서는 태양열 온수급탕에 관한 모티너링 연구를 해석하고 이론을 바탕으로 실 시스템을 적용 운용시 시스템의 운전특성을 비교 분석하였다. 장기 적인 일사량 측정 데이터 수집을 통하여 그래프화, 모티터링 시스템에 관한 연구를 살펴보았다.

  • PDF

Time-optimal multistage controllers from the theory of dynamical cell-to-cell mappings

  • Yoon, Joong-Sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.118-123
    • /
    • 1989
  • This work deals with fast-to-compute global control laws for time-optimal motion of strongly nonlinear dynamic systems like resolute robots. the theory of cell-to-cell mappings for dynamical systems offer the possibility of doing the vast majority of the control law computation offline in case of time optimization with constrained inputs. These cells result from a coarse discretization of likely swaths of state space into a set of nonuniform, contiguous volumes of relatively simple shapes. Once the cells have been designed, the bang-bang schedules for the inputs are determined for all likely starting cells and terminating cells. the resulting control law is an open-loop optimal control law with feedback monitoring and correction.

  • PDF

PLC를 이용한 경제성 있는 실시간 가공 Cell 감시/제어 시스템

  • 김선호;이춘식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1992년도 추계학술대회 논문집
    • /
    • pp.307-311
    • /
    • 1992
  • 종래의 DNC(Direct Numerical Control)에서 가공 Cell의 효율을 높이기 위한 분산 제어 DNC(Distributed Numerical Control)시스템 운용을 위해서는, 운용에 필요한 소프트웨어 외에 공작기계 및 주변기계에 대한 실시간 감시/제어 기능을 가져야 한다. 이를 위해 당 연구실에서는 경제성 및 확장성을 고려 범용 PLC (Programable Logic Controller)와 각 공작기계 및 주변기기를 연결하고, PC(Personal Computer)와 다자간 및 고속 통신이 가능한 전용 통신회선을 이용한 경제성 있는 실시간 가공 Cell 감시/제어시스템 RT-COMOS(Real Time Machine Cell Control and Monitoring System)를 개발했다. 본 논문에서는 이에 대한 연구결과를 소개한다.

Monitoring of tension force and load transfer of ground anchor by using optical FBG sensors embedded tendon

  • Kim, Young-Sang;Sung, Hyun-Jong;Kim, Hyun-Woo;Kim, Jae-Min
    • Smart Structures and Systems
    • /
    • 제7권4호
    • /
    • pp.303-317
    • /
    • 2011
  • A specially designed tendon, which is proposed by embedding an FBG sensor into the center king cable of a 7-wire strand tendon, was applied to monitor the prestress force and load transfer of ground anchor. A series of tensile tests and a model pullout test were performed to verify the feasibility of the proposed smart tendon as a measuring sensor of tension force and load transfer along the tendon. The smart tendon has proven to be very effective for monitoring prestress force and load transfer by measuring the strain change of the tendon at the free part and the fixed part of ground anchor, respectively. Two 11.5 m long proto-type ground anchors were made simply by replacing a tendon with the proposed smart tendon and prestress forces of each anchor were monitored during the loading-unloading step using both FBG sensor embedded in the smart tendon and the conventional load cell. By comparing the prestress forces measured by the smart tendon and load cell, it was found that the prestress force monitored from the FBG sensor located at the free part is comparable to that measured from the conventional load cell. Furthermore, the load transfer of prestressing force at the tendon-grout interface was clearly measured from the FBGs distributed along the fixed part. From these pullout tests, the proposed smart tendon is not only expected to be an alternative monitoring tool for measuring prestress force from the introducing stage to the long-term period for health monitoring of the ground anchor but also can be used to improve design practice through determining the economic fixed length by practically measuring the load transfer depth.