• 제목/요약/키워드: cell migration

검색결과 1,174건 처리시간 0.025초

Tumor Necrosis Factor (TNF)-${\alpha}$로 유도된 피부각질형성세포의 염증성 반응에서 봉독의 효과 (The Effects of Bee Venom on Tumor Necrosis Factor (TNF)-${\alpha}$ Induced Inflammatory Human HaCaT Keratinocytes)

  • 이우람;김경현;안현진;김정연;한상미;이광길;박관규
    • 생약학회지
    • /
    • 제45권3호
    • /
    • pp.256-261
    • /
    • 2014
  • Bee venom (BV) therapy has been used as a traditional medicine to treat a variety of conditions, such as arthritis, back pain, cancerous tumors, and skin diseases. However, regulatory effects of BV on tumor necrosis factor (TNF)-${\alpha}$-induced HaCaT cell migration or anti-inflammatory have not been explored. In the present study, we investigated the effects of BV on HaCaT cell migration and anti-inflammation. HaCaT cell migration was evaluated by wound-healing assay. The pro-inflammatory cytokines such as TNF-${\alpha}$, interleukin (IL)-$1{\beta}$, and IL-8 were examined by ELISA or Western blotting. BV treatment led to an increase in migration of HaCaT cells for 24 and 48 h. Especially, 10 ng/ml of BV were significantly increased HaCaT cell migration. Also, BV suppressed the secretion of TNF-${\alpha}$, IL-$1{\beta}$, and IL-8 in culture medium with HaCaT cells. In addition, Western blot results demonstrate that BV suppressed the expression of TNF-${\alpha}$ and IL-$1{\beta}$, in HaCaT cells. Especially, 1 or 10 ng/ml of BV markedly decreased the expression of pro-inflammatory cytokines. These results demonstrate the potential of BV for the prevention of skin inflammation induced by TNF-${\alpha}$.

Hepatitis B virus X protein enhances liver cancer cell migration by regulating calmodulin-associated actin polymerization

  • Kim, Mi-jee;Kim, Jinchul;Im, Jin-su;Kang, Inho;Ahn, Jeong Keun
    • BMB Reports
    • /
    • 제54권12호
    • /
    • pp.614-619
    • /
    • 2021
  • Hepatitis B virus (HBV) infection is a major cause of hepatocellular carcinoma (HCC), which is a highly aggressive cancer. HBV X protein (HBx), one of four HBV gene products, plays pivotal roles in the development and metastasis of HCC. It has been reported that HBx induces liver cancer cell migration and reorganizes actin cytoskeleton, however the molecular basis for actin cytoskeleton reorganization remains obscure. In this study, we for the first time report that HBx promotes actin polymerization and liver cancer cell migration by regulating calcium modulated protein, calmodulin (CaM). HBx physically interacts with CaM to control the level of phosphorylated cofilin, an actin depolymerizing factor. Mechanistically, HBx interacts with CaM, liberates Hsp90 from its inhibitory partner CaM, and increases the activity of Hsp90, thus activating LIMK1/cofilin pathway. Interestingly, the interaction between HBx and CaM is calcium-dependent and requires the CaM binding motif on HBx. These results indicate that HBx modulates CaM which plays a regulatory role in Hsp90/LIMK1/cofilin pathway of actin reorganization, suggesting a new mechanism of HBV-induced HCC metastasis specifically derived by HBx.

마늘추출물에 의한 암세포의 이동 저하 (Inhibition of Cancer Cell Migration by Compounds from Garlic Extracts)

  • 김은경;윤성지;하정민;진인혜;김영환;김선근;박다정;최영환;윤식;김치대;배순식
    • 생명과학회지
    • /
    • 제21권6호
    • /
    • pp.767-774
    • /
    • 2011
  • 세포의 이동은 많은 생리적 반응뿐만 아니라 암 세포 침윤과 전이에 중요한 역할을 수행한다. 본 연구에서는 마늘이 암세포의 이동에 미치는 영향을 확인하기 위해, 표준 마늘과 흑마늘을 준비하고 이들을 각각 물을 이용하여 추출하거나 건조하여 추출한 추출물 4 종류를 이용하여 항침윤성과 항전이성에 대해 조사하였다. 실험결과, 암세포의 이동은 건조 후 헥산으로 추출한 분획에 암세포의 이동 억제 활성이 관찰되었다. 이 분획을 박막 크로마토그래피를 이용하여 분리정제하였으며, 이를 inhibitor of cancer metastasis from garlic #27 (ICMG-27)이라 명명하였다. ICMG-27 (6 ${\mu}g/ml$)을 세포에 처리하였을 때, IGF-1에 의한 OVCAR-3와 NIH-3T3 세포의 이동을 억제함을 확인하였다. 그러나 ICMG-27은 mouse embryonic fibroblast (MEF) 세포에서 IGF-1에 의한 이동에는 영향을 주지 않았다. 이러한 ICMG-27은 OVCA-3, SKOV-3와 MDA-MB-231 세포와 같은 암세포에서 모두 IGF-1에 의한 이동을 억제함을 관찰하였다. 마지막으로 세포이동을 일으키는 인자에 따른 ICMG-27의 영향을 확인한 것으로, IGF-1, lysophosphatidic acid (LPA), sphingosine-1-phosphate (S1P), leukotriene B4 (LTB4) 그리고, angiotensinII (AngII)에 의한 OVCAR-3 세포의 이동을 모두 억제하였다. 이러한 결과를 바탕으로, ICMG-27은 암세포의 이동을 유도하는 많은 인자들에 의한 필수적인 단계를 차단함으로써, 암세포의 이동을 억제하는 것을 확인 할 수 있었으며, ICMG-27에 의한 암세포의 항 침윤 메커니즘의 규명은 암환자의 치료에 기초적인 발판을 제공할 것입니다.

리소포스타티드산은 SKOV-3 난소암세포의 mTORC2/Akt1/NOX 신호전달 기전을 통해 활성산소를 형성하고 이를 통해 세포의 이동을 촉진 (Lysophosphatidic Acid Stimulates SKOV-3 Cell Migration through the Generation of Reactive Oxygen Species via the mTORC2/Akt1/NOX Signaling Axis)

  • 김은경;진서연;하정민;배순식
    • 생명과학회지
    • /
    • 제33권2호
    • /
    • pp.129-137
    • /
    • 2023
  • 활성산소는 세포의 다양한 생리활성에 중요한 역할을 수행한다. 본 연구에서는 리소포스파티드산에 의해 유도되는 SKOV-3 세포의 이동을 조절하는 신호전달 기전 연구를 수행하였다. IGF-1 및 LPA는 처리시간 그리고 용량 의존적으로 SKOV-3 세포의 이동을 촉진시켰으며, 리소포스파티드산은 이에 따라 Akt의 인산화도 촉진하였다. 리소포스파티드산에 의한 세포이동은 리소포스파티드산 수용체 억제제에 의해 길항되었으나 IGF-1에 의한 세포이동에는 영향이 없었다. PI3K 및 ROCK의 억제는 리소포스파티드산에 의한 세포의 이동을 길항하였으나 MAPK 억제제에 의해서는 길항되지 않았다. 리소포스파티드산에 의해 형성되는 활성산소는 PI3K 및 ROCK의 억제제에 의해 길항되었으며 활성산소를 킬레이트화하면 리소포스파티드산에 의한 세포의 이동이 억제되었다. 또한 리간드에 의해 활성산소를 형성하는 NOX를 억제하면 리소포스파티드산에 의한 세포의 이동도 억제 되는 것이 관찰되었다. Rictor 및 Akt1의 발현을 억제하면 활성산소 및 세포의 이동이 저해되었으나 Raptor 및 Akt2의 발현조절은 모두 영향이 없는 것으로 관찰되었다. 마지막으로 우성활성화형태인 Akt1의 과발현은 리소포스파티드산의 자극이 없어도 SKOV-3 세포의 이동을 촉진하는 것으로 관찰되었다. 이러한 결과들을 바탕으로 리소포스파티드산은 mTORC2/Akt1/NOX 신호전달 기전을 통해 활성산소를 형성하고 SKOV-3 난소암세포의 이동을 촉진한다는 것을 제안한다.

Differential Wnt11 Expression Related to Wnt5a in High- and Low-grade Serous Ovarian Cancer: Implications for Migration, Adhesion and Survival

  • Jannesari-Ladani, Farnaz;Hossein, Ghamartaj;Izadi-Mood, Narges
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권3호
    • /
    • pp.1489-1495
    • /
    • 2014
  • Wnt is a powerful signaling pathway that plays a crucial role in cell fate determination, survival, proliferation and motility during development, in adult tissues and cancer. The aims of the present study were three fold: i) to assess Wnt11 immunoexpression and its possible relationship with Wnt5a in high- and low-grade human serous ovarian cancer (HGSC and LGSC) specimens; ii) to assess Wnt11 expression levels in Wnt5a overexpressing SKOV-3 cells; iii) to reveal the role of Wnt11 in viability, adhesion, migration and invasion of SKOV-3 cells using recombinant human Wnt11 (rhWnt11). Immunohistochemistry revealed a significant difference in Wnt11 expression between HGSC and LGSC groups (p=0.001). Moreover, a positive correlation was observed between Wnt5a and Wnt11 expression in the HGSC (r=0.713, p=0.001), but not the LGSC group. The expression of Wnt11 was decreased by 35% in Wnt5a overexpressing cells (SKOV-3/Wnt5a) compared to mock controls. Similarly Wnt11 expression levels were decreased by 47% in the presence of exogenous Wnt5a compared to untreated cells. In the presence of rhWnt11, 31% increased cell viability (p<0.001) and 21% increased cell adhesion to matrigel (p<0.01) were observed compared to control. Cell migration was increased by 1.6-fold with rhWnt11 as revealed by transwell migration assay (p<0.001). However, 45% decreased cell invasion was observed in the presence of rhWnt11 compared to control (p<0.01). Our results may suggest that differential Wnt11 immunoexpression in HGSC compared to LGSC could play important roles in serous ovarian cancer progression and may be modulated by Wnt5a expression levels.

miR-10b Promotes Migration and Invasion in Nasopharyngeal Carcinoma Cells

  • Sun, Xiao-Jin;Liu, Hao;Zhang, Pei;Zhang, Xu-Dong;Jiang, Zhi-Wen;Jiang, Chen-Chen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권9호
    • /
    • pp.5533-5537
    • /
    • 2013
  • MicroRNA-10b (miR-10b) has been reported to play an important role in some types of cancer, but the effects and possible mechanisms of action of miR-10b in the metastasis of nasopharyngeal carcinoma cells (NPC) have not been explored. The aim of the present study was to investigate the function of miR-10b in nasopharyngeal carcinoma and to determine the molecular mechanisms underlying its action. The MTT assay was used to assess proliferation of CNE-2Z cells. Wound healing and transwell migration assays were applied to assess cell migration and invasion, while and expression of E-cadherin and MMP-9 were detected using Western blot analysis. Real-time PCR was employed to detect the expression of genes related to migration and invasion and the $2^{-{\Delta}{\Delta}Ct}$ method was used to calculate the degree of expression. MTT assay showed the expression of miR-10b to have no effect on the proliferation of NPC cell lines. The wound healing assay showed that miR-10b mimics promoted the mobility and invasion of NPC cell lines. Inhibitors of miR-10b reduced the ability of NPC cell lines to migrate and invade. In addition, the expression of genes related to migration and invasion, such as E-cadherin, vimentin, and MMP-9, were confirmed to be different in the CNE-2Z NPC cell line transfected with miR-10b mimics and with miR-10b inhibitors. In the present study, miR-10b was found to upregulate the expression of MMP-9 and knockdown of miR-10b was found to significantly downregulate the expression of E-cadherin. On the whole, these results showed that miR-10b plays an important role in the invasion and metastasis of NPC cells.

Mechanistic Studies of Cyclin-Dependent Kinase Inhibitor 3 (CDKN3) in Colorectal Cancer

  • Yang, Cheng;Sun, Jun-Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권3호
    • /
    • pp.965-970
    • /
    • 2015
  • Colorectal cancer is one of the most severe subtypes of cancer, and has the highest propensity to manifest as metastatic disease. Because of the lack of knowledge of events that correlate with tumor cell migration and invasion, few therapeutic options are available. The current study aimed to explore the mechanism of colorectal cancer in hope of identifying the ideal target for future treatment. We first discovered the pro-tumor effect of a controversial cell cycle regulator, cylin-dependent kinase inhibitor 3 (CDKN3), which is highly expressed in colorectal cancer, and the possible related signaling pathways, by bioinformatics tools. We found that CDKN3 had remarkable effects in suppressing colorectal cancer cell proliferation and migration, inducing cell cycle arrest and apoptosis in a colorectal cancer cell line, SW480 cells. Our study, for the first time, provided consistent evidence showing overexpression of cell cycle regulator CDKN3, in colorectal cancer. The in vitro studies in SW480 cells revealed a unique role of CDKN3 in regulating cellular behavior of colorectal cancer cells, and implied the possibility of targeting CDKN3 as a novel treatment for colorectal cancer.

혈관내피세포의 이동에 미치는 Hepatocyte Growth Factor의 영향 (Effect of Hepatocyte Growth Factor on the Migration of Human Umbilical Vein Endothelial Cells)

  • 오인숙;소상섭;김환규
    • KSBB Journal
    • /
    • 제18권6호
    • /
    • pp.485-489
    • /
    • 2003
  • HGF는 내피세포의 증식 및 이동을 일으키는 강력한 혈관 신생 유도인자 및 생존인자로서 작용한다고 알려져 있다. 본 연구에서는 HUVECs 세포를 이용하여 내피세포의 이동 및 단백질분해효소의 분비에 미치는 HGF의 효과를 확인하였다. 그 곁과, HGF 처리 (10ng/$m\ell$)에 의해 HUVECs 세포의 이동이 약 3.3배 촉진되어, HGF가 HUVECs 세포에서 강력한 이동 유도인자라는 사실을 확인하였다. 내피세포의 이동에 관여할 것이라 여겨지는 MMPs, TIMPs 및 플라스민의 분비에 미치는 HGF의 효과를 관찰한 결과, HGF에 의해 MMP-2 및 MMP-3의 분비양이 각각 3.3배와 6.1배씩 증가되었다. HGF에 의한 TIMPs 분비효과를 관찰한 결과, TIMP-1은 대조군에 비해 약 1.8배 분비가 증가되었으나, TIMP-2는 대조군에 비해 약 3.1배 분비가 억제되었다. 또한, 광범위 MMPs-억제제인 BB-94 (20ng/$m\ell$) 및 플라스민 억제제인 $\alpha$$_2$-antiplasmin (100mU)을 처리했을 때, HGF에 의해 유도된 혈관내피세포의 이동이 거의 완벽하게 억제되었다. 결론적으로, HGF는 HUVECs 세포에서 MMP-2, MMP-3, MMP-9, TIMP-1 및 플라스민의 분비 증가를 일으켰으며, HGF에 의해 분비가 증가 된 단백질분해효소에 의해 세포외기질 및 기저막 단백질로의 혈관내피세포의 이동이 촉진되고, 결과적으로 혈관신생을 유도할 것이라 사료된다.

Astaxanthin induces migration in human skin keratinocytes via Rac1 activation and RhoA inhibition

  • Ritto, Dakanda;Tanasawet, Supita;Singkhorn, Sawana;Klaypradit, Wanwimol;Hutamekalin, Pilaiwanwadee;Tipmanee, Varomyalin;Sukketsiri, Wanida
    • Nutrition Research and Practice
    • /
    • 제11권4호
    • /
    • pp.275-280
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: Re-epithelialization has an important role in skin wound healing. Astaxanthin (ASX), a carotenoid found in crustaceans including shrimp, crab, and salmon, has been widely used for skin protection. Therefore, we investigated the effects of ASX on proliferation and migration of human skin keratinocyte cells and explored the mechanism associated with that migration. MATERIAL/METHOD: HaCaT keratinocyte cells were exposed to $0.25-1{\mu}g/mL$ of ASX. Proliferation of keratinocytes was analyzed by using MTT assays and flow cytometry. Keratinocyte migration was determined by using a scratch wound-healing assay. A mechanism for regulation of migration was explored via immunocytochemistry and western blot analysis. RESULTS: Our results suggest that ASX produces no significant toxicity in human keratinocyte cells. Cell-cycle analysis on ASX-treated keratinocytes demonstrated a significant increase in keratinocyte cell proliferation at the S phase. In addition, ASX increased keratinocyte motility across the wound space in a time-dependent manner. The mechanism by which ASX increased keratinocyte migration was associated with induction of filopodia and formation of lamellipodia, as well as with increased Cdc42 and Rac1 activation and decreased RhoA activation. CONCLUSIONS: ASX stimulates the migration of keratinocytes through Cdc42, Rac1 activation and RhoA inhibition. ASX has a positive role in the re-epithelialization of wounds. Our results may encourage further in vivo and clinical study into the development of ASX as a potential agent for wound repair.

Effect of secretory leukocyte protease inhibitor on migration and invasion of human KB oral carcinoma cells

  • Wang, Guanlin;Lim, Do-Seon;Choi, Baik-Dong;Park, Jin-Ju;Jeong, Soon-Jeong;Kim, Jin-Soo;Kim, Jae-Duk;Park, Jung-Su;Kim, Eung-Kwon;Kim, Byung-Hoon;Ham, Joo-Hyun;Jeong, Moon-Jin
    • Animal cells and systems
    • /
    • 제15권2호
    • /
    • pp.139-146
    • /
    • 2011
  • Secretory leukocyte protease inhibitor (SLPI) plays an important role in promoting the invasion and metastasis of a range of cancer cells. However, there are no reports of the expression and function of SLPI in oral carcinoma cells. In this study, the oral carcinoma cell line KB was used to determine whether SLPI affects the proliferation, migration and invasion of oral carcinoma cells. RT-PCR and Western blotting revealed high levels of endogenous SLPI expression in KB cells as well as a strong increase in SLPI secretion after wounding compared to immortalized normal oral keratinocytes (INOK). The wound healing assay revealed more migration of KB cells than INOK cells, and the SLPI treatment increased the migration of KB cells. KB cell proliferation was increased significantly by the SLPI protein but decreased by SLPI-siRNA. SLPI strongly increased the migration and invasion of KB cells. On the other hand, SLPI-siRNA decreased the migration and invasion of KB cells. This suggests that SLPI plays an important role in the metastasis of oral carcinoma cells.