• Title/Summary/Keyword: cell metabolism

Search Result 1,252, Processing Time 0.029 seconds

Effects of Palmijihwangtang (PMT) and Exercise on Glucose Metabolism in Myocardium Cell Membrane and Pancreas $\beta$-Cell of Zucker Diabetic Fatty Rats

  • Lee Myeong-Jong
    • The Journal of Korean Medicine
    • /
    • v.25 no.4
    • /
    • pp.200-208
    • /
    • 2004
  • Objective: Non-insulin Dependent Diabetes Mellitus (NIDDM) is characterized by insulin resistance, which affects the glucose transportation inside the cell. The purpose of this study was to find out how Palmijihwangtang (PMT) and exercise influence the glucose transport metabolism in the organ muscles of ZDF (zucker diabetic fatty) rat with insulin resistance. Methods: Using three male normal zucker rats and twelve male obese rats, they were divided into a normal lean group (N=3), obese control group (N=3), obese exercises group (N=3), obese medication group (N=3), obese exercise and medication group (N=3). Treadmill exercise were repeated with 27m/min speed for an hour a day, five days a week, for 8 weeks. And 20β/sub ¢/ of PMT was orally administered twice a day for 8 weeks, after that a period blood sample was exsanguinated by heart perforation and was analyzed. Results: The body weight of the OM and OEM group showed a significant decrease among all the obese groups. The blood insulin level increased significantly of all groups in comparison with the N group. All of the OE, OM and the OEM groups showed a significant decrease of insulin level compared with the OC group; especially the OEM group demonstrated the most among obese groups. Regarding GLUT-4 level, OEM was the unique group showed a significant increase among all the obese groups. The VAMP-2 level in myocardium cell membrane was increased significantly at OC group in comparison with the N group, whereas the OEM group only showed significant decrease of it. In addition, the VAMP-2 level in pancreas β-cell was significantly decreased at all the obese groups in comparison with the N group. Only the OEM group showed significant increase among all the obese groups. Conclusion: Palmijihwangtang (PMT) and exercise could effectively promote the insulin metabolism in pancreas β-cells and activate the glucose transport process in myocardium cell membrane by lowering the insulin resistance of ZDF rats.

  • PDF

SMAD4 Controls Cancer Cell Metabolism by Regulating Methylmalonic Aciduria Cobalamin Deficiency (cbl) B Type

  • Song, Kyoung;Lee, Hun Seok;Jia, Lina;Chelakkot, Chaithanya;Rajasekaran, Nirmal;Shin, Young Kee
    • Molecules and Cells
    • /
    • v.45 no.6
    • /
    • pp.413-424
    • /
    • 2022
  • Suppressor of mothers against decapentaplegic homolog (SMAD) 4 is a pluripotent signaling mediator that regulates myriad cellular functions, including cell growth, cell division, angiogenesis, apoptosis, cell invasion, and metastasis, through transforming growth factor β (TGF-β)-dependent and -independent pathways. SMAD4 is a critical modulator in signal transduction and functions primarily as a transcription factor or cofactor. Apart from being a DNA-binding factor, the additional SMAD4 mechanisms in tumor suppression remain elusive. We previously identified methyl malonyl aciduria cobalamin deficiency B type (MMAB) as a critical SMAD4 binding protein using a proto array analysis. This study confirmed the interaction between SMAD4 and MMAB using bimolecular fluorescence complementation (BiFC) assay, proximity ligation assay (PLA), and conventional immunoprecipitation. We found that transient SMAD4 overexpression down-regulates MMAB expression via a proteasome-dependent pathway. SMAD4-MMAB interaction was independent of TGF-β signaling. Finally, we determined the effect of MMAB downregulation on cancer cells. siRNA-mediated knockdown of MMAB affected cancer cell metabolism in HeLa cells by decreasing ATP production and glucose consumption as well as inducing apoptosis. These findings suggest that SMAD4 controls cancer cell metabolism by regulating MMAB.

Potential roles of reactive oxygen species derived from chemical substances involved in cancer development in the female reproductive system

  • Kim, Soo-Min;Hwang, Kyung-A;Choi, Kyung-Chul
    • BMB Reports
    • /
    • v.51 no.11
    • /
    • pp.557-562
    • /
    • 2018
  • Reactive oxygen species (ROS) are major sources of cellular oxidative stress. Specifically, cancer cells harbor genetic alterations that promote a continuous and elevated production of ROS. While such oxidative stress conditions could be harmful to normal cells, they facilitate cancer cell growth in multiple ways by causing DNA damage and genomic instability, and ultimately by reprogramming cancer cell metabolism. This review provides up to date findings regarding the roles of ROS generation induced by diverse biological molecules and chemicals in representative women's cancer. Specifically, we describe the cellular signaling pathways that regulate direct or indirect interactions between ROS homeostasis and metabolism within female genital cancer cells.

Effects of Colostrum Basic Protein from Colostrum Whey Protein: Increases in Osteoblast Proliferation and Bone Metabolism

  • Lee, Jeong-Rai;Kim, Hyun-Mi;Choi, Hee-Sun;Hong, Jeong-Hwa
    • Preventive Nutrition and Food Science
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2007
  • Colostrum basic proteins (CBP) (MW 1$\sim$30 kDa) were isolated from bovine colostrum using a series of ultrafiltration processes and their effects on osteoblast cell proliferation and bone metabolism were investigated in cell line and animal models. Treatments with CBP (1, 10, 100 $\mu$g/mL) dose-dependently increased cell proliferation of osteoblastic MC3T3 cells. Alkaline phosphatase activity, a marker of osteoblastic phenotype, in the cells was also increased after treatments with CBP in a dose-dependent manner. Significant increases in bone density were observed in femur of ovariectomized rats which were fed a diet with 1% and 10% CBP, compared to rats fed a normal diet. These results suggest that CBP may increase bone mass and density and be useful for the prevention of bone-related diseases.

Nuclear Receptor PPARα Agonist Wy-14,643 Ameliorates Hepatic Cell Death in Hepatic IKKβ-Deficient Mice

  • Kim, Taehyeong;Wahyudi, Lilik Duwi;Gonzalez, Frank J.;Kim, Jung-Hwan
    • Biomolecules & Therapeutics
    • /
    • v.25 no.5
    • /
    • pp.504-510
    • /
    • 2017
  • Inhibitor of nuclear factor kappa-B kinase beta ($IKK{\beta}$) plays a critical role in cell proliferation and inflammation in various cells by activating $NF-{\kappa}B$ signaling. However, the interrelationship between peroxisome proliferator-activated receptor ${\alpha}$ ($PPAR{\alpha}$) and $IKK{\beta}$ in cell proliferation is not clear. In this study, we investigated the possible role of $PPAR{\alpha}$ in the hepatic cell death in the absence of $IKK{\beta}$ gene using liver-specific Ikkb-null ($Ikkb^{F/F-AlbCre}$) mice. To examine the function of $PPAR{\alpha}$ activation in hepatic cell death, wild-type ($Ikkb^{F/F}$) and $Ikkb^{F/F-AlbCre}$ mice were treated with $PPAR{\alpha}$ agonist Wy-14,643 (0.1% w/w chow diet) for two weeks. As a result of Wy-14,643 treatment, apoptotic markers including caspase-3 cleavage, poly (ADP-ribose) polymerase (PARP) cleavage and TUNEL-positive staining were significantly decreased in the $Ikkb^{F/F-AlbCre}$ mice. Surprisingly, Wy-14,643 increased the phosphorylation of p65 and STAT3 in both Ikkb and $Ikkb^{F/F-AlbCre}$ mice. Furthermore, BrdU-positive cells were significantly increased in both groups after treatment with Wy-14,643. Our results suggested that $IKK{\beta}-derived$ hepatic apoptosis could be altered by $PPAR{\alpha}$ activation in conjunction with activation of $NF-{\kappa}B$ and STAT3 signaling.

Alkylglyceronephosphate Synthase (AGPS) Alters Lipid Signaling Pathways and Supports Chemotherapy Resistance of Glioma and Hepatic Carcinoma Cell Lines

  • Zhu, Yu;Liu, Xing-Jun;Yang, Ping;Zhao, Meng;Lv, Li-Xia;Zhang, Guo-Dong;Wang, Qin;Zhang, Ling
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.7
    • /
    • pp.3219-3226
    • /
    • 2014
  • Chemotherapy continues to be a mainstay of cancer treatment, although drug resistance is a major obstacle. Lipid metabolism plays a critical role in cancer pathology, with elevated ether lipid levels. Recently, alkylglyceronephosphate synthase (AGPS), an enzyme that catalyzes the critical step in ether lipid synthesis, was shown to be up-regulated in multiple types of cancer cells and primary tumors. Here, we demonstrated that silencing of AGPS in chemotherapy resistance glioma U87MG/DDP and hepatic carcinoma HepG2/ADM cell lines resulted in reduced cell proliferation, increased drug sensitivity, cell cycle arrest and cell apoptosis through reducing the intracellular concentration of lysophosphatidic acid (LPA), lysophosphatidic acid-ether (LPAe) and prostaglandin E2 (PGE2), resulting in reduction of LPA receptor and EP receptors mediated PI3K/AKT signaling pathways and the expression of several multi-drug resistance genes, like MDR1, MRP1 and ABCG2. ${\beta}$-catenin, caspase-3/8, Bcl-2 and survivin were also found to be involved. In summary, our studies indicate that AGPS plays a role in cancer chemotherapy resistance by mediating signaling lipid metabolism in cancer cells.

Ishige okamurae reduces blood glucose levels in high-fat diet mice and improves glucose metabolism in the skeletal muscle and pancreas

  • Yang, Hye-Won;Son, Myeongjoo;Choi, Junwon;Oh, Seyeon;Jeon, You-Jin;Byun, Kyunghee;Ryu, Bo Mi
    • Fisheries and Aquatic Sciences
    • /
    • v.23 no.9
    • /
    • pp.24.1-24.9
    • /
    • 2020
  • Brown alga (Ishige okamurae; IO) dietary supplements have been reported to possess anti-diabetic properties. However, the effects of IO supplements have not been evaluated on glucose metabolism in the pancreas and skeletal muscle. C57BL/6 N male mice (age, 7 weeks) were arranged in five groups: a chow diet with 0.9% saline (NFD/saline group), high-fat diet (HFD) with 0.9% saline (HFD/saline group). high-fat diet with 25 mg/kg IO extract (HFD/25/IOE). high-fat diet with 50 mg/kg IO extract (HFD/50/IOE), and high-fat diet with 75 mg/kg IO extract (HFD/75/IOE). After 4 weeks, the plasma, pancreas, and skeletal muscle samples were collected for biochemical analyses. IOE significantly ameliorated glucose tolerance impairment and fasting and 2 h blood glucose level in HFD mice. IOE also stimulated the protein expressions of the glucose transporters (GLUTs) including GLUT2 and GLUT4 and those of their related transcription factors in the pancreases and skeletal muscles of HFD mice, enhanced glucose metabolism, and regulated blood glucose level. Our results suggest Ishige okamurae extract may reduce blood glucose levels by improving glucose metabolism in the pancreas and skeletal muscle in HFD-induced diabetes.

Ginsenoside F2 enhances glucose metabolism by modulating insulin signal transduction in human hepatocarcinoma cells

  • Shengqiang Han ;Long You ;Yeye Hu ;Shuai Wei ;Tingwu Liu ;Jae Youl Cho ;Weicheng Hu
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.420-428
    • /
    • 2023
  • Background: Ginsenoside F2 (GF2), a minor component of Panax ginseng, has been reported to possess a wide variety of pharmacological activities. However, its effects on glucose metabolism have not yet been reported. Here, we investigated the underlying signaling pathways involved in its effects on hepatic glucose. Methods: HepG2 cells were used to establish insulin-resistant (IR) model and treated with GF2. Cell viability and glucose uptake-related genes were also examined by real-time PCR and immunoblots. Results: Cell viability assays showed that GF2 up to 50 μM did not affect normal and IR-HepG2 cell viability. GF2 reduced oxidative stress by inhibiting phosphorylation of the mitogen-activated protein kinases (MAPK) signaling components such as c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase 1/2 (ERK1/2), and p38 MAPK, and reducing the nuclear translocation of NF-κB. Furthermore, GF2 activated PI3K/AKT signaling, upregulated the levels of glucose transporter 2 (GLUT-2) and GLUT-4 in IR-HepG2 cells, and promoted glucose absorption. At the same time, GF2 reduced phosphoenolpyruvate carboxykinase and glucose-6-phosphatase expression as well as inhibiting gluconeogenesis. Conclusion: Overall, GF2 improved glucose metabolism disorders by reducing cellular oxidative stress in IR-HepG2 cells via MAPK signaling, participating in the PI3K/AKT/GSK-3β signaling pathway, promoting glycogen synthesis, and inhibiting gluconeogenesis.

Comparison of Adventitious Shoot Formation in Petiole Explant Cultures of 20 Cultivars of Catharanthus roseus

  • Lee, Soo-Young;Park, Pil-Son;Chung, Hwa-Jee;In, Dong-Soo;Park, Dong-Woog;Jang R. Liu
    • Journal of Plant Biotechnology
    • /
    • v.5 no.1
    • /
    • pp.59-61
    • /
    • 2003
  • Petiole explants from 20 cultivars of Catharanthus roseus were cultured on various shoot-inducing media to assess their competence for adventitious shoot formation. After eight weeks of culture on Murashige and Skoog' s medium supplemented with 4.4 $\mu\textrm{m}$6-benzyladenine and 0.5 $\mu\textrm{m}$ $\alpha$-naphthaleneacetic acid, petiole explants from 'Cooler Icy Pink' exhibited the greatest frequency of adventitious shoot formation at 40%, which was followed by 'Little Bright Eye'. By comparing with a previous study on assessment of competence for adventitious shoot formation in hypocotyl explant cultures of various cultures, it is indicated that the relative degree of their competence among cultivars varies to the organ used for the source of explant. Excised adventitious shoots were readily rooted on half-strength MS basal medium. Regenerated plantlets were successfully transplanted to potting soil and grown to maturity in a greenhouse.

Inhibitory Activity of Edible Plant Extracts on Proliferation of Human Umbilical Vein Endothelial Cells (HUVECs)

  • Song, Myoung-Chong;Kim, Sung-Hoon;Kwak, Ho-Young;Yang, Hye-Joung;Bang, Myun-Ho;Chung, In-Sik;Lee, Youn-Hyung;Baek, Nam-In
    • Journal of Applied Biological Chemistry
    • /
    • v.50 no.4
    • /
    • pp.249-253
    • /
    • 2007
  • Thirteen edible plants previously reported to show inhibitory activities on farnesyl protein transferase (FPTase) and phosphatase of the regenerating liver-3 (PRL-3) were evaluated for inhibitory activity on the proliferation of human umbilical vein endothelial cells (HUVECs). Four plant extracts, Oenothera erythrosepala, Perilla frutescens, Panicum miliaceum, and Quercus acutissima, significantly inhibited the proliferation of HUVECs induced by the basic fibroblast growth factor (bFGF) without cytotoxicity at 100 ${\mu}g/mL$. Myristica fragrans, Rosmarinus officinalis, and Syringa patula also showed inhibitory activity on the proliferation with only mild cytotoxicity.