• 제목/요약/키워드: cell adaptation

검색결과 212건 처리시간 0.027초

개방형 유연제조셀 제어기를 위한 오퍼레이션 모델에 관한 연구 (Study on Operation Model for Open Architecture Flexible Manufacturing Cell Controller)

  • 최경현
    • 동력기계공학회지
    • /
    • 제4권4호
    • /
    • pp.92-98
    • /
    • 2000
  • Modern manufacturing systems should cope with the frequent changes in a product model and disturbances in manufacturing process. The control system of such systems must cover a constant adaptation and high flexibility. Holonic Flexible Manufacturing Cell(HFMC) is introduced to handle these issues more successfully. It is based on the concept of autonomous co-operating agent, called 'Holon', which is a building block of a manufacturing system for transforming, transporting, storing and/or validating information and physical objects. In this paper the basic structure of the HFMC is represented by using Unified Modeling Language and Open architecture cell controller is developed for effective integration components of a manufacturing system. Also a new control model, called MuLOM(Multi-Layered Operation Model), is suggested to represent the control behaviour for a holonic flexible manufacturing cell control system.

  • PDF

염분적응에 따른 뱀장어 표피의 미세 구조적 변화 I . 상피세포 (Fine structural Changes in the Ele Epidermis According to Sea Water Adaptation. I Epithelial Cell)

  • 박인식;김진정조운복박상옥
    • 한국동물학회지
    • /
    • 제38권1호
    • /
    • pp.26-37
    • /
    • 1995
  • 뱀장어, Anguilla joponicu의 표피를 구성하는 주종 세포인 상피세포는 80남 정도의 많은 당김세사를 함유하고 있어서 표피의 골격 유지에 중요한 역할을 하고 있다 회유행동 특성에 의해. 성숙된 뱀장어는 바다로 나가게 되고 표피는 급격한 환경변화를 서게 되는데 그 현상들을 살펴보면 먼저 상해반응으로 세포 내의 파립 형질내세망의 내강이 확장되는 현상과 다양한 크기의 공포의 증가로 인해 상피세포들 사이의 공간이 확장되며 일부 세포에서는 괴사 또는 변성되는 형태인 다층층판구조를 갖기도 한다. 이에 대한 능동적 대처로 부착반쪽으로 모이는 당김세사들이 일정한 방향성을 갖게 되며, 상피세포 사이의 연접부위에 부착반의 수가 증가되며 미토콘드리아. 형질내세망 등 세포소기 관이 발달되고, 분비과립의 증가 등 분비양상이 증가되고, 능동적인 염배출과 연관된 핵상부의 중앙축을 따라 미토콘드리아 및 과립 형질내세망이 풍부한 세포도 나타났다. 이와 같은 변화는 염분농도의 증가에 따른 환경적요인에 의해 일어나는 상피세포의 기능적 방어기작이라고 사료된다.

  • PDF

Suspension culture of anchorage-dependent cells in serum-free medium with biodegradable polymer nanospheres

  • Ryu, Ju-Hee;Choi, Cha-Yong;Kim, Byung-Soo
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2003년도 생물공학의 동향(XIII)
    • /
    • pp.171-173
    • /
    • 2003
  • 본 연구에서는 생분해성 고분자 나노입자를 이용하여 부착성 세포의 세포군집 (cell aggregates) 형성을 촉진시켜 무혈청 배지에서 3차원적 부유 배양하는 방법을 개발했다. 생분해성 고분자 나노입자의 사용은 무혈청 배지 부유배양에서 부착성 동물세포인 HEK 293 세포의 세포군집 형성과 세포증식(나노입자를 사용하지 않은 대조군과 비교하여 2배 이상)을 촉진하였다. 일반적으로 무혈청배지 부유배양에 세포를 적응(adaptation)시키는 데에는 시간이 오래 걸리고 많은 비용이 드는데, 이 연구에서 개발된 방법은 이러한 세포적응 공정이 필요없다. 이 배양법은 여러 부착성 동물세포의 산업적 대량배양에 유용하게 사용될 수 있을 것이다.

  • PDF

Changes in Cell Membrane Fatty Acid Composition of Streptococcus thermophilus in Response to Gradually Increasing Heat Temperature

  • Min, Bonggyu;Kim, Kkotnim;Li, Vladimir;Cho, Seoae;Kim, Heebal
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권5호
    • /
    • pp.739-748
    • /
    • 2020
  • In this study, a method of heat adaptation was implemented in an attempt to increase the upper thermal threshold of two Streptococcus thermophilus found in South Korea and identified the alterations in membrane fatty acid composition to adaptive response to heat. In order to develop heat tolerant lactic acid bacteria, heat treatment was continuously applied to bacteria by increasing temperature from 60℃ until the point that no surviving cell was detected. Our results indicated significant increase in heat tolerance of heat-adapted strains compared to the wild type (WT) strains. In particular, the survival ratio of basically low heat-tolerant strain increased even more. In addition, the strains with improved heat tolerance acquired cross protection, which improved their survival ratio in acid, bile salts and osmotic conditions. A relation between heat tolerance and membrane fatty acid composition was identified. As a result of heat adaptation, the ratio of unsaturated to saturated fatty acids (UFA/SFA) and C18:1 relative concentration were decreased. C6:0 in only heat-adapted strains and C22:0 in only the naturally high heat tolerant strain were detected. These results support the hypothesis, that the consequent increase of SFA ratio is a cellular response to environmental stresses such as high temperatures, and it is able to protect the cells from acid, bile salts and osmotic conditions via cross protection. This study demonstrated that the increase in heat tolerance can be utilized as a mean to improve bacterial tolerance against various environmental stresses.

Dynamic Cell Reconfiguration Framework for Energy Conservation in Cellular Wireless Networks

  • Son, Kyuho;Guruprasad, Ranjini;Nagaraj, Santosh;Sarkar, Mahasweta;Dey, Sujit
    • Journal of Communications and Networks
    • /
    • 제18권4호
    • /
    • pp.567-579
    • /
    • 2016
  • Several energy saving techniques in cellular wireless networks such as active base station (BS) selection, transmit power budget adaptation and user association have been studied independently or only part of these aspects have been considered together in literature. In this paper, we jointly tackle these three problems and propose an integrated framework, called dynamic cell reconfiguration (DCR). It manages three techniques operating on different time scales for ultimate energy conservation while guaranteeing the quality of service (QoS) level of users. Extensive simulations under various configurations, including the real dataset of BS topology and utilization, demonstrate that the proposed DCR can achieve the performance close to an optimal exhaustive search. Compared to the conventional static scheme where all BSs are always turned on with their maximum transmit powers, DCR can significantly reduce energy consumption, e.g., more than 30% and 50% savings in uniform and non-uniform traffic distribution, respectively.

Nrf2 in TIME: The Emerging Role of Nuclear Factor Erythroid 2-Related Factor 2 in the Tumor Immune Microenvironment

  • Jialin Feng;Oliver J. Read;Albena T. Dinkova-Kostova
    • Molecules and Cells
    • /
    • 제46권3호
    • /
    • pp.142-152
    • /
    • 2023
  • Nuclear factor erythroid 2-related factor 2 (Nrf2) mediates the cellular antioxidant response, allowing adaptation and survival under conditions of oxidative, electrophilic and inflammatory stress, and has a role in metabolism, inflammation and immunity. Activation of Nrf2 provides broad and long-lasting cytoprotection, and is often hijacked by cancer cells, allowing their survival under unfavorable conditions. Moreover, Nrf2 activation in established human tumors is associated with resistance to chemo-, radio-, and immunotherapies. In addition to cancer cells, Nrf2 activation can also occur in tumor-associated macrophages (TAMs) and facilitate an anti-inflammatory, immunosuppressive tumor immune microenvironment (TIME). Several cancer cell-derived metabolites, such as itaconate, L-kynurenine, lactic acid and hyaluronic acid, play an important role in modulating the TIME and tumor-TAMs crosstalk, and have been shown to activate Nrf2. The effects of Nrf2 in TIME are context-depended, and involve multiple mechanisms, including suppression of proinflammatory cytokines, increased expression of programmed cell death ligand 1 (PD-L1), macrophage colony-stimulating factor (M-CSF) and kynureninase, accelerated catabolism of cytotoxic labile heme, and facilitating the metabolic adaptation of TAMs. This understanding presents both challenges and opportunities for strategic targeting of Nrf2 in cancer.

다층모형을 적용한 조혈모세포이식 환자의 삶의 질 변화 영향요인 (Factors Influencing Changes in Quality of Life in Patients undergoing Hematopoietic Stem Cell Transplantation: A Longitudinal and Multilevel Analysis)

  • 송지은;소향숙
    • 대한간호학회지
    • /
    • 제45권5호
    • /
    • pp.694-703
    • /
    • 2015
  • Purpose: This study was a prospective longitudinal study to identify changes in quality of life in patients undergoing allogeneic hematopoietic stem cell transplantation (HSCT). It was based on Roy's adaptation model. Methods: The questionnaires were administered before HSCT, 30 and 100 days after HSCT. Of the 48 potentially eligible patients, 44 (91.7%) participated in the study and 40 (90.9%) completed the questionnaires at 100 days after HSCT. Multilevel analysis was applied to analyze changes in quality of life. Results: Overall, quality of life showed a decreasing tendency from pre-HSCT to 100 days after HSCT. The adaptation level of participants was compensatory. Type of conditioning was the significant factor influencing quality of life before HSCT (${\beta}_{00}$=79.92, p <.001; ${\beta}_{01}$= - 12.64, p <.001) and the change rate of quality of life (${\beta}_{10}$= - 1.66, p =.020; ${\beta}_{11}$=2.88, p =.014). Symptom severity (${\beta}_{20}$= - 1.81, p =.004), depression (${\beta}_{30}$= - 0.58, p =.001), social dependency (${\beta}_{40}$= - 0.35, p =.165), and loneliness (${\beta}_{50}$= - 0.23, p =.065) had a negative effect on changes in quality of life. Symptom severity and depression were statistically significant factors influencing changes in quality of life. Conclusion: According to the results of this study, the development of nursing intervention is needed to improve quality of life in patients undergoing allogeneic hematopoietic stem cell transplantation in the early immune reconstruction period. The interventions should include programs to enhance coping capacity and programs to help control symptom severity and depression. Also these interventions need to be started from the beginning of HSCT and a multidisciplinary approach would be helpful.

The Combined Effects of Carbon Dioxide Concentration and Irradiation on Growth of the Green Alga Haematococcus pluvialis

  • 최윤이;윤영상;박종문
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2001년도 추계학술발표대회
    • /
    • pp.181-184
    • /
    • 2001
  • The biological fixation of carbon dioxide using microalgae have many advantages over chemicals and remove carbon dioxide simultaneously. A ketocarotenoid astaxanthin is hyper-accumulated in the green freshwater microalga, Haematococcus pluvialis. In the present study, the combine effects of carbon dioxide concentration and light intensity on the growth of H. pluvilais were investigated. The carbon dioxide concentration above 10% caused a severe inhibition and around 5% is optimal for growth. Adaptation to high concentration of carbon dioxide enhanced the $CO_2$ tolerance. Specific growth rate calculated differently based upon cell number or dry weight because of the distinctive life cycle patterns of H. pluvialis : small-sized motile green cell and thick cell walled red cyst cell. Based on the light dependence of H. pluvialis, internally illuminated air-lift photobioreactor was designed and operated. Gradual increase of light supply gave more active growth and more effective productivity of astaxanthin than constant light supply.

  • PDF

자율이동로봇군의 협조전략과 군행동의 실현을 위한 면역시스템의 모델링 (An Immune System Modeling for Realization of Cooperative Strategies and Group Behavior in Collective Autonomous Mobile Robots)

  • 이동욱;심귀보
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 춘계학술대회 학술발표 논문집
    • /
    • pp.127-130
    • /
    • 1998
  • In this paper, we propose a method of cooperative control(T-cell modeling) and selection of group behavior strategy(B-cell modeling) based on immune system in distributed autonomous robotic system(DARS). Immune system is living body's self-protection and self-maintenance system. Thus these features can be applied to decision making of optimal swarm behavior in dynamically changing environment. For the purpose of applying immune system to DARS, a robot is regarded as a B cell, each environmental condition as an antigen, a behavior strategy as an antibody and control parameter as a T-call respectively. The executing process of proposed method is as follows. When the environmental condition changes, a robot selects an appropriate behavior strategy. And its behavior strategy is stimulated and suppressed by other robot using communication. Finally much stimulated strategy is adopted as a swarm behavior strategy. This control scheme is based of clonal selection and idiotopic network hypothesis. And it is used for decision making of optimal swarm strategy. By T-cell modeling, adaptation ability of robot is enhanced in dynamic environments.

  • PDF

면역반응 알고리즘을 이용한 구조물의 진동제어 (A Vibration Control of the Strcture using Immune Response Algorithm)

  • 이영진;이권순
    • 한국항만학회지
    • /
    • 제13권2호
    • /
    • pp.389-398
    • /
    • 1999
  • In the biological immunity, the immune system of organisms regulates the antibody and T-cells to protect the attack from the foreign materials which are virus, germ cell, and other antigens, and supports their stable state. It has similar characteristics that has the adaptation and robustness to overcome disturbances and to control the plant of engineering application. In this paper, we build a model of the T-cell regulated immune response mechanism. We have also designed an immune response controller(IRC) focusing on the T-cell regulated immune response of the biological immune system that include both a help part to control the response and a suppress part to adjust system stabilization effect. We show some computer simulation to control the vibration of building structure system with strong wind forces excitation also demonstrate the efficiency of the proposed controller for applying a practical system even with existing nonlinear terms.

  • PDF