• Title/Summary/Keyword: cell motility

Search Result 347, Processing Time 0.022 seconds

Indol-3-Carbinol Regulated Tight Junction Permeability and Associated-Protein Level and Suppressed Cell Invasion in Human Colon Cancer Cell Line, HT-29 (인돌 (Indol-3-Carbinol)이 인체대장암세포 HT-29 세포의 투과성 밀착결합조절과 세포 침윤성 억제에 미치는 영향)

  • Kim, Sung-Ok;Choi, Yung-Hyun;Choe, Won-Kyung
    • Journal of Nutrition and Health
    • /
    • v.41 no.1
    • /
    • pp.13-21
    • /
    • 2008
  • To determine whether indol-3-carbinol (BC, $C_9H_9NO$), an autolysis product of a glucosinolate and a glucobrassicin in vegetables, regulated tight junction proteins (TJ) and suppressed cell invasion in colon cancer cells, this experiment was performed. Our results indicate that I3C inhibit cell growth of HT-29 cells in a dose (0, 50, $100{\mu}M$) and time (0, 24 and 48h) dependent manner. Using the wound healing and matrigel invasion study, respectively, BC inhibits the cell motility and invasion of the ovarian cancer cell line. The TEER values were increased in HT-29 cells grown in transwells treated with BC, reversely, paracellular permeability was decreased in those of condition. Claudin-1, claudin-5, ZO-1 and occuldin have been shown to be positively expressed in HT-29 coloncancer cells. I3C occurs concurrently with a significant decrease in the levels of those of proteins in HT-29 cells. But E-cadherin level in the HT-29 was increased by I3C. The reduction of claudin-1 and claudin-5 protein levels occurred post-transcriptionaly since their mRNA levels are no difference by I3C. Therefore, our results suggest that I3C may be expected to inhibit cancer metastasis and invasion by tighten the cell junction and restoring tight junction in colon cancer cell line, HT-29.

Synergistic antitumor activity of a DLL4/VEGF bispecific therapeutic antibody in combination with irinotecan in gastric cancer

  • Kim, Da-Hyun;Lee, Seul;Kang, Hyeok Gu;Park, Hyun-Woo;Lee, Han-Woong;Kim, Dongin;Yoem, Dong-Hoon;Ahn, Jin-Hyung;Ha, Eunsin;You, Weon-Kyoo;Lee, Sang Hoon;Kim, Seok-Jun;Chun, Kyung-Hee
    • BMB Reports
    • /
    • v.53 no.10
    • /
    • pp.533-538
    • /
    • 2020
  • Notch signaling has been identified as a critical pathway in gastric cancer (GC) progression and metastasis, and inhibition of Delta-like ligand 4 (DLL4), a Notch ligand, is suggested as a potent therapeutic approach for GC. Expression of both DLL4 and vascular endothelial growth factor receptor 2 (VEGFR2) was similar in the malignant tissues of GC patients. We focused on vascular endothelial growth factor (VEGF), a known angiogenesis regulator and activator of DLL4. Here, we used ABL001, a DLL4/VEGF bispecific therapeutic antibody, and investigated its therapeutic effect in GC. Treatment with human DLL4 therapeutic antibody (anti-hDLL4) or ABL001 slightly reduced GC cell growth in monolayer culture; however, they significantly inhibited cell growth in 3D-culture, suggesting a reduction in the cancer stem cell population. Treatment with anti-hDLL4 or ABL001 also decreased GC cell migration and invasion. Moreover, the combined treatment of irinotecan with anti-hDLL4 or ABL001 showed synergistic antitumor activity. Both combination treatments further reduced cell growth in 3D-culture as well as cell invasion. Interestingly, the combination treatment of ABL001 with irinotecan synergistically reduced the GC burden in both xenograft and orthotopic mouse models. Collectively, DLL4 inhibition significantly decreased cell motility and stem-like phenotype and the combination treatment of DLL4/VEGF bispecific therapeutic antibody with irinotecan synergistically reduced the GC burden in mouse models. Our data suggest that ABL001 potentially represents a potent agent in GC therapy. Further biochemical and pre-clinical studies are needed for its application in the clinic.

A STUDY ON OSTEOBLAST-LIKE CELL RESPONSES TO SURFACE-MODIFIED TITANIUM

  • Hong Min-Ah;Kim Yung-Soo;Kim Chang-Whe;Jang Kyung-Su;Lee Jae-Il
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.3
    • /
    • pp.300-318
    • /
    • 2003
  • Statement of problem: The success of implants depends on intimate and direct contact of implant material on bone tissue and on functional relationship with soft tissue contact. Creation and maintenance of osseointegration depend on the understanding of the tissue's healing, repairing, and remodeling capacity and these capacities rely on cellular behavior. Altering the surface properties can modify cellular responses such as cell adhesion, cell motility, bone deposition, Therefore, various implant surface treatment methods are being developed for the improved bone cell responses. Purpose: The purpose of this study was to evaluate the responses of osteoblast-like cells to surface-modified titanium. Materials and Methods: The experiment was composed of four groups. Group 1 represented the electropolished surface. Group 2 surfaces were machined surface. Group 3 and Group 4 were anodized surfaces. Group 3 had low roughness and Group 4 had high roughness. Physicochemical properties and microstructures of the discs were examined and the responses of osteoblast-like cells to the discs were investigated. The microtopography was observed by SEM. The roughness was measured by three-dimension roughness measuring system. The microstructure was analyzed by XRD, AES. To evaluate cell responses to modified titanium surfaces, osteoblasts isolated from calvaria of neonatal rat were cultured. Cell count, morphology, total protein measurement and alkaline phosphatase activities of the cultures were examined. Results and Conclusion: The results were as follows 1. The four groups showed specific microtopography respectively. Anodized group showed grain structure with micropores. 2. Surface roughness values were, from the lowest to the highest, electropolished group, machined group, low roughness anodized group, and high roughness anodized group. 3. Highly roughened anodized group was found to have increased surface oxide thickness and surface crystallinity. 4. The morphology of cells, flattened or spherical, were different from each other. In the electropolished group and machined group, the cells were almost flattened. In two anodized groups, some cells were spherical and other cells were flattened. And the 14 day culture cells of all of the groups were nearly flattened due to confluency. 5. The number of attached cells was highest in low roughness anodized group. And the machined group had significantly lower cell count than any other groups(P<.05). 6. Total protein contents showed no difference among groups. 7. The level of alkaline phosphatase activities was higher in the anodized groups than electropolished and machined groups(P<.05).

The Effects of Various Extracellular Matrices on Motility of Cultured MC3T3-E1 Cell (다양한 세포외기질이 배양 골아세포의 이동에 미치는 영향)

  • Park, Beyoung Yun;Seo, Sang Woo;Lee, Won Jai;Ryu, Chang Woo;Rah, Dong Kyun;Son, Hyun Joo;Park, Jong Chul
    • Archives of Plastic Surgery
    • /
    • v.32 no.2
    • /
    • pp.143-148
    • /
    • 2005
  • Chemotactic migration of bone forming cell, osteoblast, is an important event during bone formation, bone remodeling, and fracture healing. Migration of cells is mediated by adhesion receptors, such as integrins, that link the cell to extracellular matrix ligands, type I collagen, fibronectin, laminin and depend on interaction between integrin and extracellular ligand. Our study was designed to investigate the effect of extracellular matrix like fibronectin, laminin, type I collagen on migration of osteoblast. Migration distance and speed of MC3T3-E1 cell on extracellular matrix-coated glass were measured for 24 hours using 0.01% type I collagen, 0.01% fibronectin, 100 microliter/ml laminin. The migration distance and speed of MC3T3-E1 cell was compared using a video-microscopy system. To determine migration speed, cells were viewed with a 4 phase- contrast lens and video recorded. Images were captured using a color CCD camera and saved in 8-bit full-color mode. The migration distance on 0.01% type I collagen or 0.01% fibronectin was longer than that on $100{\mu}l/ml$ laminin-coated glass. The migration speed on fibronectin-coated glass was 68 micrometer/hour which was fastest. The migration speed on type I collagen-coated glass was similar with that on fibronectin-coated glass. The latter two migration speeds were faster than that on no-coated glass. On the other hand, the average migration speed on laminin-coated glass was 37micrometer/hour and not different from that of control group. In conclusion, the extracelluar matrix ligands such as type I collagen and fibronectin seem to play an important role in cell migration. The type I collagen or fibronectin coated scaffold is more effective for migration of osteoblast in tissue engineering process.

Anti-metastatic Effects on B16F10 Melanoma Cells of Extracts and Two Prenylated Xanthones Isolated from Maclura amboinensis Bl. Roots

  • Siripong, Pongpun;Rassamee, Kitiya;Piyaviriyakul, Suratsawadee;Yahuafai, Jantana;Kanokmedhakul, Kwanjai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3519-3528
    • /
    • 2012
  • Inhibitory effects of Maclura amboinenesis Bl, one plant used traditionally for the treatment of cancers, on metastatic potential of highly metastatic B16F10 melanoma cells were investigated in vitro. Cell proliferation was assessed using the MTT colorimetric assay. Details of metastatic capabilities including invasion, migration and adhesion of B16F10 melanoma cells were examined by Boyden Chamber invasion and migration, scratch motility and cell attachment assays, respectively. The results demonstrated that n-hexane and chloroform extracts exhibited potent anti-proliferative effects (p<0.01), whereas the methanol and aqueous extracts had less pronounced effects after 24 h exposure. Bioactivity-guided chromatographic fractionation of both active n-hexane and chloroform extracts led to the isolation of two main prenylated xanthones and characterization as macluraxanthone and gerontoxanthone-I, respectively, their structures being identified by comparison with the spectral data. Interestingly, both exhibited potent effective effects. At non-toxic effective doses, n-hexane and chloroform extracts (10 and $30{\mu}g/ml$) as well as macluraxanthone and gerontoxanthone-I (3 and $10{\mu}M$) significantly inhibited B16F10 cell invasion, to a greater extent than $10{\mu}m$ doxorubicin, while reducing migration of cancer cells without cellular cytotoxicity. Moreover, exposure of B16F10 melanoma cells to high concentrations of chloroform ($30{\mu}g/ml$) and geratoxanthone-I ($20{\mu}M$) for 24 h resulted in delayed adhesion and retarded colonization. As insights into mechanisms of action, typical morphological changes of apoptotic cells e.g. membrane blebbing, chromatin condensation, nuclear fragmentation, apoptotic bodies and loss of adhesion as well as cell cycle arrest in the G1 phase with increase of sub-G1 cell proportions, detected by Hoechst 33342 staining and flow cytometry were observed, suggesting DNA damage and subsequent apoptotic cell death. Taken together, our findings indicate for the first time that active n-hexane and chloroform extracts as well as macluraxanthone and gerontoxanthone-I isolated from Maclura amboinensis Bl. roots affect multistep of cancer metastasis processes including proliferation, adhesion, invasion and migration, possibly through induction of apoptosis of highly metastatic B16F10 melanoma cells. Based on these data, M. amboinensis Bl. represents a potential candidate novel chemopreventive and/or chemotherapeutic agent. Additionally, they also support its ethno-medicinal usage for cancer prevention and/or chemotherapy.

Inhibition of Cell Invasion by Indole-3-Carbinol in OVCAR-3 Human Ovarian Cancer Cells (Indole-3-carbinol에 의한 OVCAR-3 인체 난소암세포의 침윤 억제)

  • Choi, Yung-Hyun;Kim, Sung-Ok
    • Journal of Life Science
    • /
    • v.21 no.7
    • /
    • pp.923-931
    • /
    • 2011
  • In the present study, we investigated the effect of indole-3-carbinol (I3C), a natural compound present in vegetables, on the cell migration and invasion of OVCAR-3 ovarian cancer cells. Our results indicated that I3C inhibited the proliferation of OVCAR-3 cells, a process which was associated with inhibition of cell motility as determined by wound healing experiments and cell invasion studies. I3C treatment increased the tightness of the tight junctions (TJs), which was demonstrated by an increase in transepithelial electrical resistance and a decrease in paracellular permeability. The RT-PCR and immunoblotting results indicated that I3C repressed the levels of claudin-3 as well as claudin-4, proteins that comprise a major part of TJs and play a key role in the control and selectivity of paracellular transport. Furthermore, the activities of matrix metalloproteinase (MMP)-2 and MMP-9 were also decreased by treatment with I3C, which was connected with the down-regulation of their mRNAs and protein expression. The results suggest that I3C may be expected to inhibit cancer cell metastasis and invasion by restoring TJs and decreasing MMP activity in ovarian cancer cell line OVCAR-3.

Effect of Cholesterol Supplementation in Freezing Medium on the Survival and Integrity of Human Sperm after Cryopreservation (콜레스테롤이 동결-해동 후 인간정자의 생존과 기능보존에 미치는 영향)

  • Lim, Jung-Jin;Sung, Su-Ye;Kim, Kye-Seong;Song, Seung-Hon;Lee, Woo-Sik;Yoon, Tae-Ki;Lee, Dong-Ryul
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.35 no.3
    • /
    • pp.203-212
    • /
    • 2008
  • Objective: During cryopreservation process, cold shock and cryo-injury affect the fertilizing capacity of the sperm by damaging cell membranes with loss of functional integrity. A longstanding concept for preventing the cryo-damage is to stabilize the plasma membrane by incorporating cholesterol. This study was to determine the effects of cholesterol in freezing media on the motility and functional integrity of human sperm after cryopreservation. Methods: Control group (non-cholesterol treated) and different concentrations of cholesterol-treated sperm (14 healthy males) were frozen and thawed. After freezing and thawing of sperm, the quality of sperm was evaluated by sperm analysis, acrosome reaction test and sperm chromatin structure assay. Results: When human sperm were incubated in sperm freezing medium (SFM) containing $0.5{\mu}g$ cholesterol and then freezing/thawing, the motility of sperm have significantly improved compared to those untreated cholesterol ($33.46{\pm}1.48%$ vs. $30.10{\pm}1.07%$, p<0.05). The rate of calcium ionophore-induced acrosome reactions in post-thawed sperm was significantly higher than that ($53.60{\pm}1.60%$ vs. $47.40{\pm}1.86%$, p<0.05) in SFM containing cholesterol. Sperm chromatin structure assay revealed that DNA damage to the sperm in the cholesterol-treated group was lower than that of non-treated group. Conclusion: These results suggest that increased cholesterol content of sperm plasma membrane by supplementation of cholesterol in SFM improves sperm motility, capacitation status, and DNA integrity. Therefore, addition of cholesterol into SFM could be a useful for protecting human sperm from cold shock and cryo-injury during cryopreservation.

EFFECT OF SEASON ON SEMINAL CHARACTERISTICS OF HOLSTEIN BULL UNDER SEMI-ARID ENVIRONMENT I. BIOPHYSICAL CHARACTERISTICS

  • Salah, M.S.;El-Nouty, F.D.;Al-Hajri, M.R.;Mogawer, H.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.3
    • /
    • pp.439-447
    • /
    • 1992
  • Eight healthy Holstein bulls, 4-6 years old were used to study the effect of season of the year on the biophysical characteristics of semen. Semen was collected twice a week by AV (artificial vagina) over one-year period. The analyses revealed that all the basic seminal traits studied were differed significantly due to season, except the ejaculate volume and consistency and the percentage of swollen spermatozoa in a hypo-osmotic fructose-citrate solution. Ejaculates collected during hot summer season had significantly lower sperm motility, concentration and total counts, and higher percentage of dead spermatozoa than those collected during winter time. Warm spring had moderate semen quality. The temperature-humidity index was calculated and it was associated (p < 0.01) negatively with the ejaculate pH, sperm concentration and total counts, and positively with the % of dead sperms. Ejaculate volume, percentage of swollen spermatozoa, individual motilities did not correlate significantly with the change in temperature-humidity index values. The total live, motile spermatozoa per ejaculate during both the winter and spring seasons showed significant increase of about 37% and 32% respectively over the summer season. Also, rectal temperatures of the bulls were elevated during the hot summer season, while the values of blood hemoglobin and packed-cell volume were decreased.

No Association between PIK3CA Polymorphism and Lung Cancer Risk in the Korean Population

  • Sung, Jae-Sook;Park, Kyong-Hwa;Kim, Seung-Tae;Seo, Jae-Hong;Shin, Sang-Won;Kim, Jun-Suk;Kim, Yeul-Hong
    • Genomics & Informatics
    • /
    • v.8 no.4
    • /
    • pp.194-200
    • /
    • 2010
  • The PIK3CA gene, oncogenic gene located on human chromosome 3q26.3, is an important regulator of cell proliferation, death, motility and invasion. To evaluate the role of PIK3CA gene in the risk of Korean lung cancer, genotypes of the PIK3CA polymorphisms (rs11709323, rs2699895, rs3729679, rs17849074 and rs1356413) were determined in 423 lung cancer patients and 443 normal controls. Statistical analyses revealed that the genotypes and haplotypes in the PIK3CA gene were not significantly associated with the risk of lung cancer in the Korean population, suggesting that these PIK3CA polymorphisms do not contribute to the genetic susceptibility to lung cancer in the Korean population.

Primary cilia in energy balance signaling and metabolic disorder

  • Lee, Hankyu;Song, Jieun;Jung, Joo Hyun;Ko, Hyuk Wan
    • BMB Reports
    • /
    • v.48 no.12
    • /
    • pp.647-654
    • /
    • 2015
  • Energy homeostasis in our body system is maintained by balancing the intake and expenditure of energy. Excessive accumulation of fat by disrupting the balance system causes overweight and obesity, which are increasingly becoming global health concerns. Understanding the pathogenesis of obesity focused on studying the genes related to familial types of obesity. Recently, a rare human genetic disorder, ciliopathy, links the role for genes regulating structure and function of a cellular organelle, the primary cilium, to metabolic disorder, obesity and type II diabetes. Primary cilia are microtubule based hair-like membranous structures, lacking motility and functions such as sensing the environmental cues, and transducing extracellular signals within the cells. Interestingly, the subclass of ciliopathies, such as Bardet-Biedle and Alström syndrome, manifest obesity and type II diabetes in human and mouse model systems. Moreover, studies on genetic mouse model system indicate that more ciliary genes affect energy homeostasis through multiple regulatory steps such as central and peripheral actions of leptin and insulin. In this review, we discuss the latest findings in primary cilia and metabolic disorders, and propose the possible interaction between primary cilia and the leptin and insulin signal pathways which might enhance our understanding of the unambiguous link of a cell's antenna to obesity and type II diabetes.