• 제목/요약/키워드: celestial gear wheel

검색결과 3건 처리시간 0.017초

A Study on an Analysis and Design of the Internal Structure of Heumgyeonggak-nu

  • Kim, Sang Hyuk;Yun, Yong-Hyun;Ham, Seon Young;Mihn, Byeong-Hee;Ki, Ho-Chul;Yoon, Myung-Kyoon
    • Journal of Astronomy and Space Sciences
    • /
    • 제34권2호
    • /
    • pp.171-182
    • /
    • 2017
  • In this study, the internal structure of a Heumgyeonggak-nu (欽敬閣漏) was designed, and the power transmission mechanism was analyzed. Heumgyeonggak-nu is an automated water clock from the Joseon Dynasty that was installed within Heumgyeonggak (欽敬閣), and it was manufactured in the $20^{th}$ year of the reign of King Sejong (1438). As descriptions of Heumgyeonggak-nu in ancient literature have mostly focused on its external shape, the study of its internal mechanism has been difficult. A detailed analysis of the literature record on Heumgyeonggak-nu (e.g., The Annals of the Joseon Dynasty) indicates that Heumgyeonggak-nu had a three-stage water clock, included a waterfall or tilting vessel (欹器) using the overflowed water, and displayed the time using a ball. In this study, the Cheonhyeong apparatus, water wheel, scoop, and various mechanism wheels were designed so that 16 fixed-type scoops could operate at a constant speed for the water wheel with a diameter of 100 cm. As the scoop can contain 1.25 l of water and the water wheel rotates 61 times a day, a total of 1,220 l of water is required. Also, the power gear wheel was designed as a 366-tooth gear, which supported the operation of the time signal gear wheel. To implement the movement of stars on the celestial sphere, the rotation ratio of the celestial gear wheel to the diurnal motion gear ring was set to 366:365. In addition, to operate the sun movement apparatus on the ecliptic, a gear device was installed on the South Pole axis. It is expected that the results of this study can be used for the manufacture and restoration of the operation model of Heumgyeonggak-nu.

Structure and Conceptual Design of a Water-Hammering-Type Honsang for Restoration

  • Lee, Yong-Sam;Kim, Sang-Hyuk
    • Journal of Astronomy and Space Sciences
    • /
    • 제29권2호
    • /
    • pp.221-232
    • /
    • 2012
  • We analyzed the manufacturing procedure, specifications, repair history, and details of celestial movements of the water-hammering type $Honsang$ (celestial globe). Results from our study on the remaining $Honsangs$ in China and Japan and on the reconstruction models in Korea were applied to our conceptual design of the water-hammering type $Honsang$. A $Honui$ (armillary sphere) and $Honsang$ using the water-hammering method were manufactured in $Joseon$ in 1435 (the 17th year of King $Sejong$). $Jang$ $Yeong-Sil$ developed the $Honsang$ system based on the water-operation method of $Shui$ $y{\ddot{u}}n$ $i$ $hsiang$ $t'ai$ in China. Water-operation means driving water wheels using a water flow. The most important factor in this type of operation is the precision of the water clock and the control of the water wheel movement. The water-hammering type $Honsang$ in $Joseon$ probably adopted the $Cheonhyeong$ (天衡; oriental escapement device) system of $Shui$ $y{\ddot{u}}n$ $i$ $hsiang$ $t'ai$ in China and the overflow mechanism of $Jagyeongnu$ (striking clepsydra) in $Joseon$, etc. In addition to the $Cheonryun$ system, more gear instruments were needed to stage the rotation of the $Honsang$ globe and the sun's movement. In this study, the water-hammering mechanism is analyzed in the structure of a water clock, a water wheel, the $Cheonhyeong$ system, and the $Giryun$ system, as an organically working operation mechanism. We expect that this study will serve as an essential basis for studies on $Heumgyeonggaknu$, the water-operating astronomical clock, and other astronomical clocks in the middle and latter parts of the $Joseon$ dynasty.

홍대용 통천의의 혼천의 연구 (A STUDY ON THE ARMILLARY SPHERE OF TONGCHEON-UI DESCRIBED BY HONG DAE-YONG)

  • 민병희;윤용현;김상혁;기호철
    • 천문학논총
    • /
    • 제36권3호
    • /
    • pp.79-95
    • /
    • 2021
  • This study aims to develop a restoration model of an armillary sphere of Tongcheon-ui (Pan-celestial Armillary Sphere) by referring to the records of Damheonseo (Hong Dae-Yong Anthology) and the artifact of an armillary sphere in the Korean Christian Museum of Soongsil University. Between 1760 and 1762, Hong, Dae-Yong (1731-1783) built Tongcheon-ui, with Na, Kyung-Jeok (1690-1762) designing the basic structure and Ann, Cheo-In (1710-1787) completing the assembly. The model in this study is a spherical body with a diameter of 510 mm. Tongcheon-ui operates the armillary sphere by transmitting the rotational power from the lantern clock. The armillary sphere is constructed in the fashion of a two-layer sphere: the outer one is Yukhab-ui that is fixed; and the inner one, Samsin-ui, is rotated around the polar axis. In the equatorial ring possessed by Samsin-ui, an ecliptic ring and a lunar-path ring are successively fixed and are tilted by 23.5° and 28.5° over the equatorial ring, respectively. A solar miniature attached to a 365-toothed inner gear on the ecliptic ring reproduces the annual motion of the Sun. A lunar miniature installed on a 114-toothed inner gear of the lunar-path ring can also replay the moon's orbital motion and phase change. By the set of 'a ratchet gear, a shaft and a spur gear' installed in the solstice-colure double-ring, the inner gears in the ecliptic ring and lunar-path ring can be rotated in the opposite direction to the rotation of Samsin-ui and then the solar and lunar miniatures can simulate their revolution over the period of a year and a month, respectively. In order to indicate the change of the moon phases, 27 pins were arranged in a uniform circle around the lunar-path ring, and the 29-toothed wheel is fixed under the solar miniature. At the center of the armillary sphere, an earth plate representing a world map is fixed horizontally. Tongcheon-ui is the armillary sphere clock developed by Confucian scholars in the late Joseon Dynasty, and the technical level at which astronomical clocks could be produced at the time is of a high standard.