• Title/Summary/Keyword: cause of disease and pathogenesis

Search Result 178, Processing Time 0.035 seconds

Current Status and Application Prospects of Anti-Atherosclerotic Active Biomaterials (항동맥경화 활성 바이오소재 개발 연구 동향 및 활용 전망)

  • Seunghee Kim;Jeongho Lee;Hah Young Yoo
    • Korean Chemical Engineering Research
    • /
    • v.62 no.2
    • /
    • pp.133-141
    • /
    • 2024
  • Atherosclerosis, a disease with high morbidity and mortality worldwide, is a chronic inflammatory disease that is a major cause of cardiovascular diseases such as stroke and myocardial infarction. Atherosclerosis is characterized by the accumulation of lipid deposits in the arteries, forming atheromas. This leads to the narrowing of the arteries and thrombosis. Recently, the need to develop bio-derived anti-atherosclerotic materials has been highlighted with concerns about the side effects of synthetic therapeutics. Accordingly, related research (such as the discovery of biomaterials for the improvement and treatment of atherosclerosis and the identification of mechanisms) has been actively conducted. Biomaterials including polysaccharides, polyphenols, and coenzyme Q10 have been reported to inhibit or delay symptoms by modulating factors involved in the development of atherosclerosis. For biomaterials with superior activity, in vivo anti-atherosclerotic activity has been confirmed. In this review, the pathogenesis of atherosclerosis was investigated, and the current status and application prospects of biomaterials with anti-atherosclerotic activity were proposed.

Roles of Ascospores and Arthroconidia of Xylogone ganodermophthora in Development of Yellow Rot in Cultivated Mushroom, Ganoderma lucidum

  • Kang, Hyo-Jung;Chang, Who-Bong;Yun, Sung-Hwan;Lee, Yin-Won
    • The Plant Pathology Journal
    • /
    • v.27 no.2
    • /
    • pp.138-147
    • /
    • 2011
  • Xylogone ganodermophthora, an ascomycetous fungus, is known to cause yellow rot in the cultivated mushroom Ganoderma lucidum. In this study, we investigated the dissemination of this fungal pathogen in G. lucidum grown in cultivation houses. To determine the role of ascospores produced by X. ganodermophthora in disease development, we constructed a green fluorescent protein-labeled transgenic strain. This X. ganodermophthora strain produced a number of ascomata in the tissues of oak logs on which G. lucidum had been grown and on the mushroom fruit bodies. However, the ascospores released from the ascomata were not able to germinate on water agar or potato dextrose agar. Moreover, less than 0.1% of the ascospores showed green fluorescence, indicating that most ascospores of X. ganodermophthora were not viable. To determine the manner in which X. ganodermophthora disseminates, diseased oak logs were either buried in isolated soil beds as soil-borne inocula or placed around soil beds as air-borne inocula. In addition, culture bottles in which G. lucidum mycelia had been grown were placed on each floor of a five-floor shelf near X. ganodermophthora inocula. One year after cultivation, yellow rot occurred in almost all of the oak logs in the soil beds, including those in beds without soil-borne inocula. In contrast, none of the G. lucidum in the culture bottles was infected, suggesting that dissemination of X. ganodermophthora can occur via the cultivation soil.

Loeffler's Syndrome Induced by Ingestion of Urushiol Chicken

  • Jeong, Shin-Ok;Oh, Ji-Hyun;Kwak, Yun-Mi;Lee, Junehyuk;Jang, An-Soo;Kim, Do-Jin;Park, Choon-Sik
    • Tuberculosis and Respiratory Diseases
    • /
    • v.78 no.3
    • /
    • pp.258-261
    • /
    • 2015
  • Eosinophilic lung diseases are heterogeneous disorders characterized by varying degrees of pulmonary parenchyma or blood eosinophilia. Causes of eosinophilic lung diseases range from drug ingestion to parasitic or fungal infection as well as idiopathic. The exact pathogenesis of eosinophilic lung disease remains unknown. Urushiol chicken can frequently cause allergic reactions. Contact dermatitis (both local and systemic) represents the most-common side effect of urushiol chicken ingestion. However, there has been no previous report of lung involvement following urushiol chicken ingestion until now. A 66-year-old male was admitted to our hospital with exertional dyspnea. Serial chest X-ray revealed multiple migrating infiltrations in both lung fields, with eosinophilic infiltration revealed by lung biopsy. The patient had ingested urushiol chicken on two occasions within the 2 weeks immediately prior to disease onset. His symptoms and migrating lung lesions were resolved following administration of oral corticosteroids.

Spinocerebellar ataxia 7 (SCA7) (척수소뇌성 운동실조증 제7형)

  • Seon-Yong, Jeong;Seok-Hun, Jang;Hyon-J., Kim
    • Journal of Genetic Medicine
    • /
    • v.4 no.1
    • /
    • pp.22-37
    • /
    • 2007
  • The autosomal dominant spinocerebellar ataxias (SCAs) are a group of neurodegenerative diseases, clinically and genetically heterogeneous, characterized by degeneration of spinocerebellar pathways with variable involvement of other neural systems. At present, 27 distinct genetic forms of SCAs are known: SCA1-8, SCA10-21, SCA23, SCA25-28, DRPLA (dentatorubral-pallidoluysian atrophy), and 16q-liked ADCA (autosomal dominant cerebellar ataxia). Epidemiological data about the prevalence of SCAs are restricted to a few studies of isolated geographical regions, and most do not reflect the real occurrence of the disease. In general a prevalence of about 0.3-2 cases per 100,000 people is assumed. As SCA are highly heterogeneous, the prevalence of specific subtypes varies between different ethnic and continental populations. Most recent data suggest that SCA3 is the commonest subtype worldwide; SCA1, SCA2, SCA6, SCA7, and SCA8 have a prevalence of over 2%, and the remaining SCAs are thought to be rare (prevalence <1%). In this review, we highlight and discuss the SCA7. The hallmark of SCA7 is the association of hereditary ataxia and visual loss caused by pigmentary macular degeneration. Visual failure is progressive, bilateral and symmetrical, and leads irreversibly to blindness. This association represents a distinct disease entity classified as autosomal dominant cerebellar ataxia (ADCA) type II by Harding. The disease affectsprimarily the cerebellum and the retina by the moderate to severe neuronal loss and gliosis, but also many other central nervous system structures as the disease progresses. SCA7 is caused by expansion of an unstable trinucleotide CAG repeat in the ATXN7 gene encoding a polyglutamine (polyQ) tract in the corresponding protein, ataxin-7. Normal ATXN7 alleles contain 4-35 CAG repeats, whereas pathological alleles contain from 36->450 CAG repeats. Immunoblott analysis demonstrated that ataxin-7 is widely expressed but that expression levels vary among tissues. Instability of expanded repeats is more pronounced in SCA7 than in other SCA subtypes and can cause substantial lowering of age at onset in successive generations termed ‘anticipation’ so that children may become diseased even before their parents develop symptoms. The strong anticipation in SCA7 and the rarity of contractions should have led to its extinction within a few generations. There is no specific drug therapy for this neurodegenerative disorder. Currently, therapy remains purely symptomatic. Cellular models and SCA7 transgenic mice have been generated which constitute valuable resources for studying the disease mechanism. Understanding the pathogenetic mechanisms of neurodegeneration in SCAs should lead to the identification of potential therapeutic targets and ultimately facilitate drug discovery. Here we summarize the clinical, pathological, and genetic aspects of SCA7, and review the current understanding of the pathogenesis of this disorder. Further, we also review the potential therapeutic strategies that are currently being explored in polyglutamine diseases.

  • PDF

Effects of Shiryung-tang Extract on the Liver Injury induced by Ethanol in Rats (시령탕(柴苓湯)이 에탄올 투여로 유발된 흰쥐의 간손상에 미치는 방어효과)

  • Kim, Bum Hoi;Choi, Yung Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.5
    • /
    • pp.611-616
    • /
    • 2013
  • Alcoholic liver disease (ALD) is a major cause of morbidity and mortality around the world. Although much progress has been made in understanding the pathogenesis of ALD, there remains no effective therapy for it. Accumulated evidence indicates that oxidative stress is the main pathological factors in the development of ALD. Ethanol administration causes accumulation of reactive oxygen species (ROS), including superoxide, hydroxyl radical, and hydrogen peroxide. ROS, in turn, cause lipid peroxidation of cellular membranes, and protein and DNA oxidation, which results in hepatocyte injury. In addition to pro-oxidants formation, antioxidants depletion caused by ethanol administration also results in oxidative stress. The objective of this study is to investigate the effects of Shiryung-tang extract on the chronic alcoholic liver injury induced by EtOH. Male Sprague Dawley rats were used in this study. All rats were maintained under standard laboratory conditions ($23{\pm}1^{\circ}C$, 12h light/12h dark cycles). All animals (n=30) were randomly divided into following groups: (1) Normal group, treated with distilled water (n=10); (2) Control group, treated with ethanol (n=10); (3) Sample group, treated with ethanol + pharmacopuncture (n=10). For oral administration of ethanol in Control and Sample group, the ethanol was dissolved in distilled water in concentrations of 25%(v/v). Throughout the experiment of 8 week, the rats were allowed free access to water and standard chow. Sample group were administrated by Shiryung-tang extract daily for 8 weeks. Control group were given normal saline for same weeks. As a results, the oral administration of ethanol for 8 weeks leads to hepatotoxicity. The levels of hepatic marker such as HDL-cholesterol, triglyceride, aspartate aminotransferase and alanine aminotransferase were altered. The ethanol also increased lipid peroxidation and depletion of antioxidant enzyme activities as well as hepatic tissue injury. However, the treatment of Shiryung-tang extract prevented all the alterations induced by ethanol and returned their levels to near normal. These data suggest that Shiryung-tang extract could have a beneficial effect in inhibiting the oxidative damage induced by chronic ethanol administration. Therefore, Shiryung-tang extract can be a candidate to protect against EtOH-induced liver injury.

Cellular and Molecular Roles of $\beta$ Cell Autoantigens, Macrophages and T Cells in the Pathogenesis of Automimmune Diabetes

  • Yoon, Ji-Won;Jun, Hee-Sook
    • Archives of Pharmacal Research
    • /
    • v.22 no.5
    • /
    • pp.437-447
    • /
    • 1999
  • Type I diabetes, also known as insulin-dependent diabetes mellitus (IDDM) results from the destruction of insulin-producing pancreatic $\beta$ cells by a progressive $\beta$ cell-specific autoimmune process. The pathogenesis of autoimmune IDDM has been extensively studied for the past two decades using animal models such as the non-obese diabetic (NOD) mouse and the Bio-Breeding (BB) rat. However, the initial events that trigger the immune responses leading to the selective destruction of the $\beta$ cells are poorly understood. It is thought that $\beta$ cell auto-antigens are involved in the triggering of $\beta$ cell-specific autoimmunity. Among a dozen putative $\beta$ cell autoantigens, glutamic acid decarboxylase (GAD) has bee proposed as perhaps the strongest candidate in both humans and the NOD mouse. In the NOD mouse, GAD, as compared with other $\beta$ cell autoantigens, provokes the earliest T cell proliferative response. The suppression of GAD expression in the $\beta$ cells results in the prevention of autoimmune diabetes in NOD mice. In addition, the major populations of cells infiltrating the iselts during the early stage of insulitis in BB rats and NOD mice are macrophages and dendritic cells. The inactivation of macrophages in NOD mice results in the prevention of T cell mediated autoimmune diabetes. Macrophages are primary contributors to the creation of the immune environment conducive to the development and activation of $\beta$cell-specific Th1-type CD4+ T cells and CD8+ cytotoxic T cells that cause autoimmune diabetes in NOD mice. CD4+ and CD8+ T cells are both believed to be important for the destruction of $\beta$ cells. These cells, as final effectors, can kill the insulin-producing $\beta$ cells by the induction of apoptosis. In addition, CD8+ cytotoxic T cells release granzyme and cytolysin (perforin), which are also toxic to $\beta$ cells. In this way, macrophages, CD4+ T cells and CD8+ T cells act synergistically to kill the $\beta$ cells in conjunction with $\beta$ cell autoantigens and MHC class I and II antigens, resulting in the onset of autoimmune type I diabetes.

  • PDF

Cytokine Storm Related to CD4+ T Cells in Influenza Virus-Associated Acute Necrotizing Encephalopathy

  • Shushu Wang;Dongyao Wang;Xuesong Wang;Mingwu Chen;Yanshi Wang;Haoquan Zhou;Yonggang Zhou;Yong Lv;Haiming Wei
    • IMMUNE NETWORK
    • /
    • v.24 no.2
    • /
    • pp.18.1-18.12
    • /
    • 2024
  • Acute necrotizing encephalopathy (ANE) is a rare but deadly complication with an unclear pathogenesis. We aimed to elucidate the immune characteristics of H1N1 influenza virus-associated ANE (IANE) and provide a potential therapeutic approach for IANE. Seven pediatric cases from a concentrated outbreak of H1N1 influenza were included in this study. The patients' CD4+ T cells from peripheral blood decreased sharply in number but highly expressed Eomesodermin (Eomes), CD69 and PD-1, companied with extremely high levels of IL-6, IL-8 in the cerebrospinal fluid and plasma. Patient 2, who showed high fever and seizures and was admitted to the hospital very early in the disease course, received intravenous tocilizumab and subsequently showed a reduction in temperature and a stable conscious state 24 h later. In conclusion, a proinflammatory cytokine storm associated with activated CD4+ T cells may cause severe brain pathology in IANE. Tocilizumab may be helpful in treating IANE.

Drug research and development tend to hyperlipidemia (이상지질혈증과 치료제 연구개발 경향)

  • Seol, In-Chan
    • Journal of Haehwa Medicine
    • /
    • v.18 no.2
    • /
    • pp.1-12
    • /
    • 2009
  • Most of the cholesterol is synthesized by liver in the body while about one of third is taken via dietary. The main functions of cholesterol is to protect membranes in cell surface, avoid the arterial bleeding by hypertension, and prolong the life of erythrocytes, and so on. However, overload of cholesterol leads to arteriosclerosis associated with leading death cause. Lack of physical activity, emotional and environmental stress, and low intake of protein or vitamin E induce the unbalance between HDL- and LDL-cholesterol so become a basis of ischemic disorders in heart, brain and elsewhere in the body. So far, four major classes of medications for hyperlipidemia are HMG-CoA reductase inhibitors (statins), bile acid sequestrants, nicotinic acid, and fibric acids. The statins can lower LDL and levels triglyceride, but may induce myopathy and an elevation of liver enzyme levels. The bile acid sequestrants lower LDL levels and raise HDL levels with no effect on triglyceride levels but side effects of gastrointestinal (GI) distress, constipation, and a decrease in the absorption of other drugs. Nicotinic acid and fibric acids lower LDL and triglyceride levels with showing flushing, hyperglycemia, hyperuricemia, GI distress, and hepatotoxicity dyspepsia, gallstones, myopathy, and unexplained noncardiac death as adverse effects. Above western drugs lower cholesterol by 15 to 30% while all have notable adverse effects. In traditional medicine, hyperlipidemia is regarded as retention of phlegm and fluid disease. Etiology and pathogenesis of hyperlipidemia is basically based on Spleen-Deficiency and Phlegm-Stagnation, accumulation and stasis of -heat, and Qi & blood stagnation induced by Phlegm-damp, water-dampness, and blood stasis. Thereby, strengthening Spleen and dissolving Phlegm, clearing away heat and diuresis, and supplementing Qi and activating blood circulation are commonly used therapeutic methods for hyperlipidemia. The traditional herbal medicine, have been used for patients with CVA, hypertension or hyperlipidemia in Oriental hospital or Oriental clinic. The lock and key theory is used to develop most of western medicine, however many diseases are caused by mixed factors in body-complex system. We expect that Oriental pharmacological theory could be newborn as a novel drug showing high advantage of blood levels of lipidsand QOL of performance without side effects.

  • PDF

Sonicated Protein Fractions of Mycoplasma hyopneumoniae Induce Inflammatory Responses and Differential Gene Expression in a Murine Alveolar Macrophage Cell Line

  • Damte, Dereje;Lee, Seung-Jin;Birhanu, Biruk Tesfaye;Suh, Joo-Won;Park, Seung-Chun
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.12
    • /
    • pp.2153-2159
    • /
    • 2015
  • Mycoplasma hyopneumoniae is known to cause porcine enzootic pneumonia (EP), an important disease in swine production. The objective of this study was to examine the effects of sonicated protein fractions of M. hyopneumoniae on inflammatory response and gene expression in the murine alveolar macrophage MH-S cell line. The effects of sonicated protein fractions and intact M. hyopneumoniae on the gene expression of cytokines and iNOS were assessed using RT-PCR. The Annealing Control Primer (ACP)-based PCR method was used to screen differentially expressed genes. Increased transcription of interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, COX-2, and iNOS mRNA was observed after exposure to the supernatant (SPT), precipitant (PPT), and intact M. hyopneumoniae protein. A time-dependent analysis of the mRNA expression revealed an upregulation after 4 h for IL-6 and iNOS and after 12 h for IL-1β and TNF-α, for both SPT and PPT; the fold change in COX-2 expression was less. A dose- and time-dependent correlation was observed in nitrite (NO) production for both protein fractions; however, there was no significant difference between the effects of the two protein fractions. In a differential gene analysis, PCR revealed differential expression for nine gene bands after 3 h of stimulation — only one gene was downregulated, while the remaining eight were upregulated. The results of this study provide insights that help improve our understanding of the mechanisms underlying the pathogenesis of and macrophage defenses against M. hyopneumoniae assault, and suggest targets for future studies on therapeutic interventions for M. hyopneumoniae infections.

Comparison of Protein Electrophoresis Fractions in the Leptospirosis Patient Serum

  • Kim Chong Ho;Park Seung-Taeck;Oh Geum-Ga
    • Biomedical Science Letters
    • /
    • v.10 no.3
    • /
    • pp.253-257
    • /
    • 2004
  • The mechanisms by which leptospires caused disease are not well understood. A number of putative virulence factors have been suggested, but with few exceptions their role in pathogenesis remains unclear. In these days, many cases of leptospirosis are diagnosed by serological immunoassay. Leptospirosis is characterized by the histopathology of liver, kidney, heart, and lung, but the electrophoresis fractions of serum protein are not compared. We analyzed total protein, albumin, aspartic aminotranferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), creatinine and urea nitrogen (UN) in sera of patients diagnosed leptospirosis. Total protein and albumin were decreased in 18.5% and 31.2% of patients, respectively. AST, ALT, ALP, UN and creatinine were increased in 90.4%, 66.9%, 28.0%, 15.9% and 10.8% of patients, respectively. We performed cellulose acetate membrane electrophoresis (EP) on sera of patients increased both of AST and ALT, and of patients increased both of creatinine and UN. In patients increased both of AST and ALT, and in patients increased both of AST and ALT, the relative percentage of albumin to total protein in patient serum was dcreased in 89.1 % of patients. α₁-globulin, α₂-globulin, β-globulin and γ-globulin were increased in 85.1 %, 75.2%, 33.6% and 98.0% of patients, respectively. In patients increased both of creatinine and UN, the relative percentage of albumin to total protein in patient serum was dcreased in 93.8% of patients. α₁-globulin, α₂-globulin, β-globulin and γ-globulin were increased in 87.5%, 100%, 31.2% and 93.8% of patients, respectively. These data indicate that infection of Leptospira causes severe liver damage to most of leptospirosis patients, but doesn't cause renal damage to most of them. The relative rate of serum protein electrophoresis fractions to total protein are not identical with them of typical hepatitis patient.

  • PDF